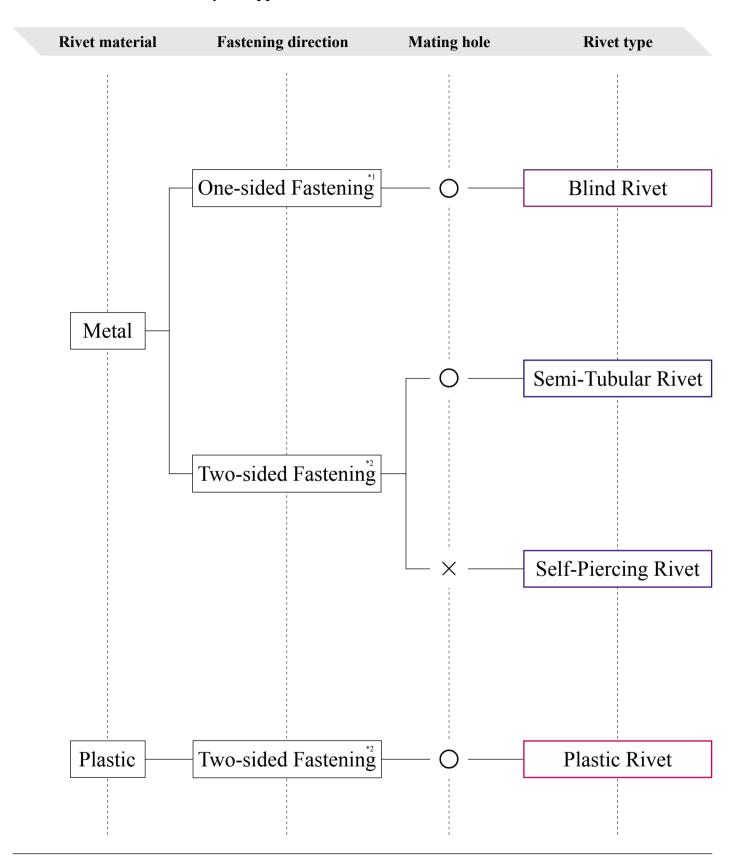

FASTENER GENERAL CATALOGUE

50 years' experience of manufacturing rivets: "Fukui Byora's Fastener Series" leads the industry with total fastening technology.

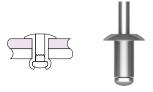

Since our founding, FUKUI BYORA's fastening technology has been developed and honed by various customer needs and various usage environments. FUKUI BYORA, which designs and manufactures both rivets and rivet setters, offers a wide variety of solutions to meet customer needs with the "total fastening technology" that we have independently accumulated.

Please choose one that best suits your needs from our extensive product line.

SELECTION FLOW CHART

Choose a rivet that best suits your application.

^{*1.} One-sided fastening is accomplished by working on only one side of the assembly.


All the products above are compliant with RoHS/ELV:SOC6. (except for rivet setter)

In this brochure, the materials to be fastened are referred to as base materials or workpieces. Fastening and riveting may be used interchangeably.

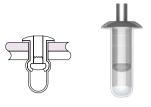
Please do not make any modifications to the products (surface treatment, heat treatment, changes to the dimensions etc.), as they may cause the fastening defects. If you wish to change the specifications, please consult with us in advance.

^{*2.} Two-sided fastening is accomplished by working on both sides of the materials using a fastening jig.

Blind rivet

Standard Type

Standard rivet


Blind rivet most commonly used for multiple application in various industries. It is globally recognized as a standard fastener.

FX Type

Various fastening ranges

The rivet in one size fits a wide range of material thicknesses. It is characterized by bright finish and high strength clamping.

CP Type

Maximum sealing

The rivet provides maximum air sealed fastening, thanks to its plastic cap. It also prevents galvanic corrosion between different metals.

GT Type

High strength clamping

The large-diameter fastens the workpieces tightly together.

PL Type

For soft materials

The sleeve spreads widely in four petal-like parts that fasten the materials together. It is mainly used to fasten soft materials, such as plywood and plastic.

PLX Type

Mandrel head fixed type

Fastening the fixed mandrel head will reduce abnormal noise and stop running water

HL Type

Lower buckling

By maintaining the height of the buckling side low, different design variations are available.

Semi-tublular rivet

Semi-Tubular Rivet

General use

Secure and uniform fastening.

Self-piercing rivet

Self-Piercing Rivet

Process reduction.

The rivet pierces through the materials while fastening them together. A work hole does not need to be made in advance.

Plastic rivet

Roll-Up Rivet

Environmental friendliness

The plastic, semi-tubular rivet is fastened at normal temperature and is environmentally friendly. Various colors are available.

e-Power Rivet

Higher strength

It has twice the fastening strength of the rollup rivet.

Rivet setter

Rivet Setter

Power saving

Fukui Byora's rivet setter with an automatic rivet feeder as standard equipment will dramatically improve efficiency in fastening work.

BLIND RIVET

Easy, secure and speedy fastening from one side of base materials

Structure of blind rivet

■ Features

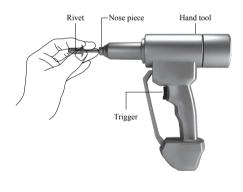
Easy, secure and speedy fastening

A blind rivet is very easy to fasten even for a novice. The rivet can be fastened easily, securely, and utilizing a lightweight hand tool.

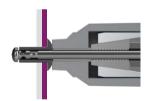
Fastened with access to only one side of assembly

A blind rivet can fasten workpieces together with access to only one side of each of them. The ideal application in which to use a blind rivet is when the rear side of the mating piece is not accessible with a jig or when the product is sealed up, or is large or hard to handle.

Reliable fastening


A blind rivet is very high in fastening reliability and used for various uses in various industries. It securely fastens dissimilar materials low in weldability, such as aluminum and iron.

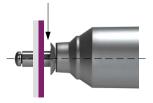
Reduction in initial investment


Using an inexpensive hand tool, the initial investment is low

■ Fastening process

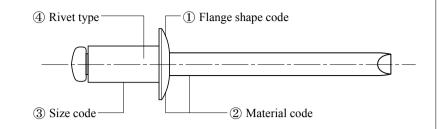
- ① Attach the rivet to the hand tool.
- ② Insert the rivet into the mating hole.
- ③ Press the tool against the workpieces and pull the trigger.
- Fastening is complete.

Handling precautions


1. Selection of hand tool

Choose a hand tool that meets the required fastening capability with the size and material of the blind rivet used. Choose a suitable tool, otherwise, it may result in improper fastening.

- 2. If the rivet is installed in the situations below, it may result in improper fastening or malfunction of the hand tool.
- (1) The tool is tilted.
- (2) The rivet is oblique to the workpiece.
- (3) There is a gap between the rivet head and the workpiece.
- (4) There is a gap between the workpieces.



CP type

■ Product coding system

① Flange shape code: See Table 1 (D: Round head, K: Countersunk and LF: Large flange).

② Material code : See Table 2 (*AS: Aluminum sleeve and steel mandrel).

③ Size code : See the appropriate specification table.

④ Rivet type : See Table 3 (FX/GT/CP/PL/PLX/HL) (* No code for standard type).

■ Flange shape code (Table 1)

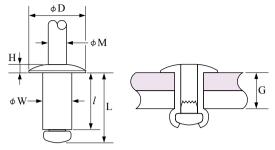
Code	Type	Shape	Features
D	Round head		Standard flange shape
K	Countersunk		The rivet head is flush with the surface of one of the mating parts.
LF	Large flange		The flange diameter is large. It is suitable for soft materials.

■ Material code (Table 2)

Code	Sleeve material	Mandrel material
AS	Aluminum A5154 / A5052	Hard steel wire
AA	Aluminum A5052	High-tensile aluminum wire
SS	Steel SWCH	Hard steel wire
CS	Austenitic stainless steel	Hard steel wire
CC	Austenitic stainless steel	High-tensile stainless steel wire
AC	Aluminum A5154	High-tensile stainless steel wire

Rivet type (Table 3)

Туре	Features
Standard	Blind rivet most commonly used in various industries.
FX	The rivet in one size fits a wide range of material thicknesses.
GT	The large-diameter curls pull the workpieces tightly.
СР	The rivet provides highly airtight fastening, thanks to its plastic cap.
PL	The sleeve spreads widely in four petal-like parts that fasten the materials. It is mainly used to fasten soft materials.
PLX	Fastening the fixed mandrel head will reduce abnormal noise and stop running water.
HL	By maintaining the height of the buckling side low, different design variations are available.


$Standard\ Type\ / ^{\text{Standard\ rivet}}_{\text{(Round\ head}\ \cdot\ Countersunk)}$

Symbols of standard dimensions and

Blind rivet most commonly used for multiple application in various

installation diagram

industries. It is globally recognized as a standard fastener.

(Round head)

■ Product code

① Flange shape code (D: Round head and K: Countersunk)

② Material code (AS, AA, SS, CS and CC * See the specification table.)

③ Size code (* See the specification table.)

φD φM

(Countersunk)

■ AS specification table

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code		fastening range mm)	<i>l</i>	L*1	D	I (m	H m)	M	Strei (k)	ngth ^{*2} N)
W(mm)	(mm)	code	Round head	Countersunk	(mm)	(mm)	(mm)	Round head	Countersunk	(mm)	Tensile	Shear
		32	0.5 ~ 3.2	1.1 ~ 3.2	5.7	7.5			0.9			
2.4	2.5 +0.1	33	3.2 ~ 4.8	3.2 ~ 4.8	7.3	9.1	4.7	0.8	0.9	1.5	0.61	0.44
2.4	2.5 0	34	4.8 ~ 6.4	_	8.9	10.7	4./	0.8		1.5	0.61	0.44
		35	6.4 ~ 8.0	_	11.0	12.8			_			
		41	0.5 ~ 1.6	1.3 ~ 1.6	4.9	7.0						
		42	1.6 ~ 3.2	1.6 ~ 3.2	6.5	8.6						
		43	3.2 ~ 4.8	3.2 ~ 4.8	8.1	10.2						
3.2	3.3 +0.1	44	4.8 ~ 6.4	4.8 ~ 6.4	9.7	11.8	6.4	1.0	1.1	1.85	1.34	0.90
3.2	3.5 0	45	6.4 ~ 8.0	6.4 ~ 8.0	11.3	13.4	0.4	1.0	1.1	1.65	1.34	0.90
		46	8.0 ~ 9.6	8.0 ~ 9.6	12.9	15.0						
		47	9.6 ~ 11.2	9.6 ~ 11.2	15.4	17.5						
		48	11.2 ~ 12.8	11.2 ~ 12.8	17.1	19.2						
		52	1.0 ~ 3.2	1.6 ~ 3.2	7.3	9.9						
		53	3.2 ~ 4.8	3.2 ~ 4.8	8.9	11.5						
	.0.1	54	4.8 ~ 6.4	4.8 ~ 6.4	10.5	13.1						
4.0	4.1 +0.1	55	6.4 ~ 8.0	6.4 ~ 8.0	12.1	14.7	8.0	1.2	1.4	2.25	2.17	1.53
		56	8.0 ~ 9.6	8.0 ~ 9.6	13.7	16.3						
		57	9.6 ~ 11.2	9.6 ~ 11.2	15.3	17.9						
		58	11.2 ~ 12.8	11.2 ~ 12.8	16.9	19.5						
		62	1.6 ~ 3.2	1.8 ~ 3.2	8.1	10.9						
		63	3.2 ~ 4.8	3.2 ~ 4.8	9.7	12.5						
		64	4.8 ~ 6.4	4.8 ~ 6.4	11.3	14.1						
	.0.1	65	6.4 ~ 8.0	6.4 ~ 8.0	12.9	15.7						
4.8	4.9 +0.1	66	8.0 ~ 9.6	8.0 ~ 9.6	14.5	17.3	9.5	1.5	1.6	2.65	3.10	2.12
		67	9.6 ~ 11.2	9.6 ~ 11.2	16.1	18.9						
		68	11.2 ~ 12.8	11.2 ~ 12.8	17.7	20.5						
		610	12.8 ~ 16.0	12.8 ~ 16.0	21.2	24.0						
		612	16.0 ~ 19.2	16.0 ~ 19.2	24.4	27.2						
		82	1.6 ~ 3.2		9.7	13.5			_			
	.01	84	3.2 ~ 6.4	3.2 ~ 6.4	12.9	16.7						
6.4	6.5 +0.1	86	6.4 ~ 9.6	6.4 ~ 9.6	16.1	19.9	12.8	1.7	2.5	3.82	4.95	3.23
		88	9.6 ~ 12.8	9.6 ~ 12.8	19.3	23.1						
		812	12.8 ~ 19.2	12.8 ~ 19.2	25.7	29.5						

^{*1.} The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

■ AA specification table

AA (Sleeve: Aluminum A5052 / fabric, Mandrel: High-tensile aluminum wire / fabric)

Sleeve diameter	Mating hole diameter	Size code	Recommended G(r	fastening range nm)	<i>l</i>	L*1	D (mm)		H m)	M (mm)	Strei (k)	ngth*2 N)
W(mm)	(mm)	code	Round head	Countersunk	(mm)	(mm)	(111111)	Round head	Countersunk	(111111)	Tensile	Shear
2.4	2.5 +0.1	32	1.6 ~ 3.2	1.1 ~ 3.2	5.5	7.3	4.7	0.8	0.9	1.6	0.36	0.31
2.4	2.3 0	34	3.2 ~ 6.4	3.2 ~ 6.4	9.0	10.8	4.7	0.8	0.9	1.0	0.30	0.51
		41	0.5 ~ 1.6	1.3 ~ 1.6	5.2	7.2						
		42	1.6 ~ 3.2	1.6 ~ 3.2	6.0	8.0						
	.0.1	43	3.2 ~ 4.8	3.2 ~ 4.8	7.6	9.6						
3.2	3.3 +0.1	44	4.8 ~ 6.4	4.8 ~ 6.4	9.2	11.2	6.4	1.0	1.1	2.0	0.91	0.66
		45	6.4 ~ 8.0	6.4 ~ 8.0	10.7	12.7						
		46	8.0 ~ 9.6	8.0 ~ 9.6	12.3	14.3						
		48	9.6 ~ 12.8	9.6 ~ 12.8	16.2	18.2						
		52	1.0 ~ 3.2	1.6 ~ 3.2	6.6	9.2						
	.0.1	53	3.2 ~ 4.8	3.2 ~ 4.8	8.2	10.8						
4.0	4.1 +0.1	54	4.8 ~ 6.4	4.8 ~ 6.4	9.7	12.3	8.0	1.2	1.4	2.6	1.39	0.96
		56	6.4 ~ 9.6	6.4 ~ 9.6	12.9	15.5						
		58	9.6 ~ 12.8	9.6 ~ 12.8	16.1	18.7						
		62	1.6 ~ 3.2	1.8 ~ 3.2	7.1	9.9						
	0.1	64	3.2 ~ 6.4	3.2 ~ 6.4	10.3	13.1						
4.8	4.9 +0.1	66	6.4 ~ 9.6	6.4 ~ 9.6	13.5	16.3	9.5	1.5	1.6	3.0	2.11	1.46
		68	9.6 ~ 12.8	9.6 ~ 12.8	16.7	19.5						
		610	12.8 ~ 16.0	_	19.8	22.6			_			
		82	1.6 ~ 3.2		9.2	13.0						
		84	3.2 ~ 6.4		12.6	16.4						
6.4	6.5 +0.1	86	6.4 ~ 9.6	_	16.6	20.4	12.8	1.7	_	4.0	3.83	2.54
		88	9.6 ~ 12.8		20.5	24.3						
		812	12.8 ~ 19.2		26.0	29.8						

■ SS specification table

SS (Sleeve: Steel SWCH / trivalent chromate, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code		fastening range nm)	l (mm)	L*1 (mm)	D (mm)		H m)	M (mm)	Strei (k)	ngth*2 N)
W(mm)	(mm)	code	Round head	Countersunk	(111111)	(11111)	(111111)	Round head	Countersunk	(111111)	Tensile	Shear
2.4	2.5 +0.1	32	0.5 ~ 3.2	1.1 ~ 3.2	5.7	7.5	4.7	0.8	0.9	1.5	0.94	0.78
2.4	2.3 0	33	3.2 ~ 4.8	3.2 ~ 4.8	7.3	9.1	4.7	0.8	0.9	1.3	0.94	0.78
		41	0.5 ~ 1.6	1.3 ~ 1.6	4.9	7.0						
		42	1.6 ~ 3.2	1.6 ~ 3.2	6.5	8.6						
		43	3.2 ~ 4.8	3.2 ~ 4.8	8.1	10.2						
3.2	3.3 +0.1	44	4.8 ~ 6.4	4.8 ~ 6.4	9.7	11.8	6.4	1.0	1.1	1.92	1.73	1.43
3.2	3.3 0	45	6.4 ~ 8.0	6.4 ~ 8.0	11.3	13.4	0.4	1.0	1.1	1.92	1./3	1.43
		46	8.0 ~ 9.6	8.0 ~ 9.6	12.9	15.0						
		47	9.6 ~ 11.2	9.6 ~ 11.2	14.5	17.5						
		48	11.2 ~ 12.8	11.2 ~ 12.8	16.4	19.2						
		52	1.0 ~ 3.2	1.6 ~ 3.2	7.3	9.9						
		53	3.2 ~ 4.8	3.2 ~ 4.8	8.9	11.5						
	.01	54	4.8 ~ 6.4	4.8 ~ 6.4	10.5	13.1						
4.0	4.1 +0.1	55	6.4 ~ 8.0	6.4 ~ 8.0	12.1	14.7	8.0	1.1	1.4	2.42	2.84	2.0
		56	8.0 ~ 9.6	8.0 ~ 9.6	13.7	16.3						
		57	9.6 ~ 11.2	9.6 ~ 11.2	15.3	17.9						
		58	11.2 ~ 12.8	11.2 ~ 12.8	16.9	19.5						
		62	1.6 ~ 3.2	1.8 ~ 3.2	8.1	10.9						
		63	3.2 ~ 4.8	3.2 ~ 4.8	9.7	12.5						
		64	4.8 ~ 6.4	4.8 ~ 6.4	11.3	14.1						
	[65	6.4 ~ 8.0	6.4 ~ 8.0	12.9	15.7						
4.8	4.9 +0.1	66	8.0 ~ 9.6	8.0 ~ 9.6	14.5	17.3	9.5	1.5	1.6	2.94	4.37	3.35
		67	9.6 ~ 11.2	9.6 ~ 11.2	16.1	18.9						
		68	11.2 ~ 12.8	11.2 ~ 12.8	17.7	20.5						
		610	12.8 ~ 16.0	12.8 ~ 16.0	20.9	24.0						
		612	16.0 ~ 19.2	16.0 ~ 19.2	24.1	27.2						
		84	3.2 ~ 6.4		12.9	16.7						
6.4	6.5 +0.1	86	6.4 ~ 9.6		16.1	19.9	12.8	1.7	_	3.82	7.28	5.86
0.4	0.5	88	9.6 ~ 12.8	_	19.3	23.1	12.8	1./	_	3.64	1.28	3.80
		812	12.8 ~ 19.2		25.7	29.5						

^{*1.}The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

$Standard\ Type\ / \ {\it Standard\ rivet} \ ({\it Round\ head} \cdot {\it Countersunk})$

■ CS specification table

CS (Sleeve: Austenitic stainless steel / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code		fastening range mm)	l (mm)	L*1 (mm)	D (mm)	_	H m)	M (mm)		ngth*2 N)
W(mm)	(mm)	code	Round head	Countersunk	(111111)	(111111)	(111111)	Round head	Countersunk	(mm)	Tensile	Shear
		41	0.5 ~ 1.6	_	4.7	7.1			_			
		42	1.6 ~ 3.2	1.6 ~ 3.2	6.8	9.2						
3.2	3.3 +0.1	43	3.2 ~ 4.8	3.2 ~ 4.8	8.6	11.0	6.4	1.0	1.1	2.0	2.59	2.20
3.2	3.3 0	44	4.8 ~ 6.4	4.8 ~ 6.4	10.2	12.6	0.4			2.0	2.39	2.20
		46	6.4 ~ 9.6	_	13.7	16.1			_			
		48	9.6 ~ 12.8	_	19.0	21.4		0.9	_			
		52	1.6 ~ 3.2	1.8 ~ 3.2	7.1	10.5						
	10.1	53	3.2 ~ 4.8	3.2 ~ 4.8	8.6	12.0						
4.0	4.1 +0.1	54	4.8 ~ 6.4	4.8 ~ 6.4	10.2	13.6	8.0	1.3	1.6	2.5	4.04	3.48
	0	56	6.4 ~ 9.6	6.4 ~ 9.6	13.9	17.3						
		58	9.6 ~ 12.8	9.6 ~ 12.8	17.7	21.1						
		62	1.6 ~ 3.2	_	7.1	10.5			_			
		64	3.2 ~ 6.4	3.2 ~ 6.4	10.8	14.2			1.9			
4.8	4.9 +0.1	66	6.4 ~ 9.6	6.4 ~ 9.6	14.0	17.4	9.5	1.7	1.9	3.0	5.41	4.44
4.8	4.9 0	68	9.6 ~ 12.8	_	17.2	20.6	9.5			3.0	3.41	4.44
		610	12.8 ~ 16.0	_	20.0	23.4			_			
		612	16.0 ~ 19.2	_	23.6	27.1		1.2	_			

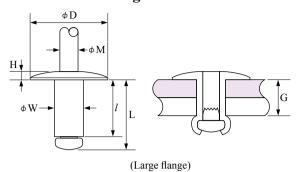
CC specification table

CC (Sleeve: Austenitic stainless steel / fabric, Mandrel: High-tensile stainless steel wire / fabric)

					(211111111				ndici. Iligii-telis			
Sleeve diameter	Mating hole diameter	Size code		fastening range nm)	l (mm)	L*1 (mm)	D (mm)		H m)	M (mm)	Strei (k	ngth ^{*2} N)
W(mm)	(mm)	code	Round head	Countersunk	(111111)	(11111)	(111111)	Round head	Countersunk	(111111)	Tensile	Shear
2.4	2.5 +0.1	32	0.5 ~ 3.2		6.0	7.8	4.7	0.8		1.48	1.48	1.40
2.4	2.3 0	34	3.2 ~ 4.8	_	8.8	10.7	4./	0.8		1.40	1.40	1.40
		41	0.5 ~ 1.6	1.3 ~ 1.6	4.7	7.1						
		42	1.6 ~ 3.2	1.6 ~ 3.2	6.8	9.2						
3.2	3.3 +0.1	43	3.2 ~ 4.8	3.2 ~ 4.8	8.6	11.0	6.4	1.0	1.1	2.0	2.59	2.20
3.2	3.3 0	44	4.8 ~ 6.4	4.8 ~ 6.4	10.2	12.6	0.4	1.0	1.1	2.0	2.39	2.20
		46	6.4 ~ 9.6	6.4 ~ 9.6	13.7	16.1						
		48	9.6 ~ 12.8	_	19.0	21.4		0.9	_			
		52	1.6 ~ 3.2	1.8 ~ 3.2	7.1	10.5						
	0.1	53	3.2 ~ 4.8	3.2 ~ 4.8	8.6	12.0						
4.0	4.1 +0.1	54	4.8 ~ 6.4	4.8 ~ 6.4	10.2	13.6	8.0	1.3	1.6	2.5	4.04	3.48
		56	6.4 ~ 9.6	6.4 ~ 9.6	13.9	17.3						
		58	9.6 ~ 12.8	9.6 ~ 12.8	17.7	21.1						
		62	1.6 ~ 3.2	2.1 ~ 3.2	7.1	10.5						
		64	3.2 ~ 6.4	3.2 ~ 6.4	10.8	14.2						
4.8	4.9 +0.1	66	6.4 ~ 9.6	6.4 ~ 9.6	14.0	17.4	9.5	1.7	1.9	3.0	5.41	4.44
4.8	4.9 0	68	9.6 ~ 12.8	9.6 ~ 12.8	17.2	20.6	7.3	1.7	1.9	3.0	3.41	4.44
		610	12.8 ~ 16.0	12.8 ~ 16.0	20.0	23.4						
		612	16.0 ~ 19.2	16.0 ~ 19.2	23.6	27.1		1.2	_			

^{*1.} The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.


- (2) The steel sleeve is plated with trivalent chromate.
- (3) The rivets with the following specifications are made to order. (i) Long mandrel (ii) Painted head and (iii) Fastening range G exceeding 19.2 mm
- (4) The standard dimensions are subject to change without notice.
- (5) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.

$Standard\ Type\ / \ ^{Standard\ rivet}_{(Large\ flange^{*i})}$

Standard blind rivet with a large flange.

Symbols of standard dimensions and installation diagram

■ Product code

 $\underset{\tiny{1}}{\text{LF}} \underset{\tiny{2}}{\text{AS}} \underset{\tiny{3}}{\underline{53}}$

① Flange shape code (LF: Large flange)

② Material code (AS, AA and SS * See the specification table.)

③ Size code (* See the specification table.)

AS specification table

AS (Sleeve: Aluminum A5154 / fabric. Mandrel: Hard steel wire / zinc plating)

- 115 sp	ecincatio	ıı tabı			Λ.	3 (SICCVC. Alun	ninum A5154 / fa	aorie, iviandrei		1 0
Sleeve diameter W(mm)	Mating hole diameter (mm)	Size code	Recommended fastening range G(mm)	l (mm)	L*2 (mm)	D (mm)	H (mm) Large flange	M (mm)	Stre. (k	ngth*3 N) Shear
()	(3333)	41	0.5 ~ 1.6	4.9	7.0		Large Hange		Telistic	Silcai
		42	$0.3 \sim 1.0$ $1.6 \sim 3.2$	6.5	8.6					
		43	$3.2 \sim 4.8$	8.1	10.2					
	.0.1	44	4.8 ~ 6.4	9.7	11.8	8.0	1.0			
3.2	3.3 +0.1	45	$6.4 \sim 8.0$	11.3	13.4	9.5	1.0	1.85	1.34	0.90
		46	8.0 ~ 9.6	12.9	15.4	7.5	1.2			
		47	9.6 ~ 11.2	15.4	17.5					
		48	$11.2 \sim 12.8$	17.1	19.2					
		52	1.0 ~ 3.2	7.3	9.9					
		53	$3.2 \sim 4.8$	8.9	11.5					
		54	4.8 ~ 6.4	10.5	13.1				2.17	
4.0	4.1 +0.1	55	6.4 ~ 8.0	12.1	14.7	10.0	1.3	2.25		1.53
	0	56	8.0 ~ 9.6	13.7	16.3	12.0	1.5			
		57	9.6 ~ 11.2	15.3	17.9					
		58	11.2 ~ 12.8	16.9	19.5					
		62	1.6 ~ 3.2	8.1	10.9					
		63	3.2 ~ 4.8	9.7	12.5					
		64	4.8 ~ 6.4	11.3	14.1					
	0.1	65	6.4 ~ 8.0	12.9	15.7	12.0	1.7			
4.8	4.8 4.9 +0.1	66	8.0 ~ 9.6	14.5	17.3	13.0	1.8	2.65	3.10	2.12
		67	9.6 ~ 11.2	16.1	18.9	15.5	2.0			
		68	11.2 ~ 12.8	17.7	20.5					
		610	12.8 ~ 16.0	21.2	24.0					
		612	16.0 ~ 19.2	24.4	27.2					

^{*1.} Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

$Standard\ Type\ / ^{Standard\ rivet}_{(Large\ flange^{*1})}$

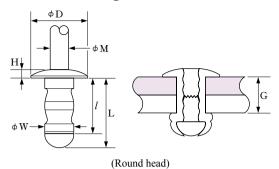
■ AA specification table

AA (Sleeve: Aluminum A5052 / fabric, Mandrel: High-tensile aluminum wire / fabric)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l (mm)	L*2 (mm)	D (mm)	H (mm)	M (mm)	Strength*3 (kN)	
W(mm)	(mm)	code	G(mm)	(IIIII)	(11111)	(IIIII)	Large flange	(IIIII)	Tensile	Shear
		41	0.5 ~ 1.6	5.2	7.2					
		42	1.6 ~ 3.2	6.0	8.0					
	.0.1	43	3.2 ~ 4.8	7.6	9.6	0.0	1.0			
3.2	3.3 +0.1	44	4.8 ~ 6.4	9.2	11.2	8.0 9.5	1.0 1.2	2.0	0.91	0.66
		45	6.4 ~ 8.0	10.7	12.7	7.5	1.2			
		46	8.0 ~ 9.6	12.3	14.3					
		48	9.6 ~ 12.8	16.2	18.2					
		52	1.0 ~ 3.2	6.6	9.2					
	.0.1	53	3.2 ~ 4.8	8.2	10.8	0.5	1.2			
4.0	4.1 +0.1	54	4.8 ~ 6.4	9.7	12.3	9.5 12.0	1.2 1.5	2.6	1.39	0.96
		56	6.4 ~ 9.6	12.9	15.5	12.0	1.5			
		58	9.6 ~ 12.8	16.1	18.7					
		62	1.6 ~ 3.2	7.1	9.9					
	4.8 4.9 +0.1	64	3.2 ~ 6.4	10.3	13.1	12.0	1.0			
4.8		66	6.4 ~ 9.6	13.5	16.3	13.0 15.5	1.8 2.0	3.0	2.11	1.46
		68	9.6 ~ 12.8	16.7	19.5		2.0			
		610	12.8 ~ 16.0	19.8	22.6					

SS specification table

SS spe	ecification	i tabie	<u> </u>		SS (Sleev	e: Steel SWCH	/ trivalent chro	mate, Mandrel	: Hard steel wir	e / zinc plating)
Sleeve diameter W(mm)	Mating hole diameter (mm)	Size code	Recommended fastening range G(mm)	l (mm)	L*2 (mm)	D (mm)	H (mm) Large flange	M (mm)		ngth*3 N) Shear
		41	0.5 ~ 1.6	4.9	7.0		0 0			
		42	1.6 ~ 3.2	6.5	8.6					
		43	3.2 ~ 4.8	8.1	10.2					
	2 2 +0.1	44	4.8 ~ 6.4	9.7	11.8	8.0	1.0		1.50	
3.2	3.3 +0.1	45	6.4 ~ 8.0	11.3	13.4	9.5	1.2	1.92	1.73	1.43
		46	8.0 ~ 9.6	12.9	15.0					
		47	9.6 ~ 11.2	14.5	17.5					
		48	11.2 ~ 12.8	16.4	19.2					
		52	1.0 ~ 3.2	7.3	9.9					
		53	3.2 ~ 4.8	8.9	11.5					
	0.1	54	4.8 ~ 6.4	10.5	13.1	10.0	1.2			
4.0	4.1 +0.1	55	6.4 ~ 8.0	12.1	14.7	10.0 12.0	1.3 1.5	2.42	2.84	2.0
		56	8.0 ~ 9.6	13.7	16.3	12.0	1.5			
		57	9.6 ~ 11.2	15.3	17.9					
		58	11.2 ~ 12.8	16.9	19.5					
		62	1.6 ~ 3.2	8.1	10.9					
		63	3.2 ~ 4.8	9.7	12.5					
		64	4.8 ~ 6.4	11.3	14.1					
	.01	65	$6.4 \sim 8.0$	12.9	15.7	13.0	1.8			
4.8	4.8 4.9 +0.1	66	8.0 ~ 9.6	14.5	17.3	15.0	2.0	2.94	4.37	3.35
		67	9.6 ~ 11.2	16.1	18.9	15.5	2.0			
		68	11.2 ~ 12.8	17.7	20.5					
		610	12.8 ~ 16.0	20.9	24.0					
		612	16.0 ~ 19.2	24.1	27.2					


^{*1.} Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

FX Type / Various fastening ranges (Round head)

The rivet in one size fits a wide range of material thicknesses. It is characterized by neat finish and high strength clamping.

Symbols of standard dimensions and installation diagram

■ Product code

 $\underset{\tiny{1}}{\underline{D}} \underset{\tiny{2}}{\underline{AS}} \underset{\tiny{3}}{\underline{503}} \underset{\tiny{4}}{\underline{FX}}$

① Flange shape code (D: Round head)

② Material code (AS and SS * See the specification table.)

③ Size code (* See the specification table.)

④ Rivet type (FX)

■ AS specification table

AS (Sleeve: Aluminum A5052 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	diameter diameter		Recommended fastening range	<i>l</i>	L*1	D (mm)	H (mm)	M	Strength*2 (kN)	
W(mm)	(mm)	code	G(mm)	(mm)	(mm)	(IIIII)	Round head	(mm)	Tensile	Shear
3.2	3.3 +0.1	401	0.8 ~ 4.7	8.1	10.2	6.4	1.0	1.92	1.0	0.7
3.2	3.3 0	402	4.0 ~ 7.9	11.1	13.2	0.4	1.0	1.92	1.0	0.7
		501	1.2 ~ 6.3	9.3	11.8					
4.0	4.1 +0.1	502	4.0 ~ 9.5	13.0	15.5	8.0	1.2	2.42	1.5	1.1
		503	6.4 ~ 12.7	18.0	20.5					
		601	1.6 ~ 6.4	10.5	13.4					
1.0	4.0 +0.1	602	4.8 ~ 11.4	15.8	18.7	9.5	1.5	2.94	2.5	1.7
4.8	$4.8 \qquad 4.9 \stackrel{+0.1}{0}$	603	8.4 ~ 12.7	17.9	20.8	9.5	1.5	2.94	2.5	1./
		604	12.7 ~ 19.8	25.9	28.8					

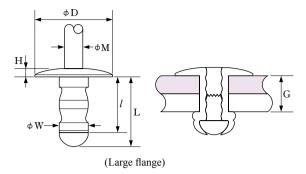
■ SS specification table

 $SS\ (Sleeve:\ Steel\ SWCH\ /\ trivalent\ chromate,\ \ Mandrel:\ Hard\ steel\ wire\ /\ zinc\ plating)$

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	<i>l</i>	L*1 (mm)	D (mm)	H (mm)	M (mm)	Stre.	ngth*2 N)
W(mm)	(mm)	code	G(mm)	(mm)	(111111)	(11111)	Round head	(111111)	Tensile	Shear
3.2	3.3 +0.1	401	0.8 ~ 4.7	8.1	10.2	6.4	1.0	2.02	1.3	1.1
3.2	3.3 0	402	4.0 ~ 7.9	11.1	13.2	0.4	1.0	2.02	1.5	1.1
		601	1.6 ~ 6.4	10.5	13.6					
4.0	4.9 +0.1	602	4.8 ~ 11.4	15.8	18.9	0.5	1.5	2.10	2.4	2.6
4.8 4.	4.9 0	603	8.4 ~ 12.7	17.9	21.0	9.5	1.5	3.12	3.4	2.6
		604	12.7 ~ 19.8	25.9	29.0					

^{*1.} The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.


- (2) The steel sleeve is plated with trivalent chromate.
- (3) The standard dimensions are subject to change without notice.
- (4) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.

$FX\ Type\ / \ ^{\text{Various fastening ranges}}_{\text{(Large flange}^{*1})}$

The rivet in once size fits a wide range of material thicknesses, and the large flange firmly holds the workpieces in place.

Symbols of standard dimensions and installation diagram

■ Product code

 $\underset{\tiny{\bigcirc}}{LF}\underset{\tiny{\bigcirc}}{AS}\underset{\tiny{\bigcirc}}{503}\underset{\tiny{\bigcirc}}{FX}$

① Flange shape code (LF: Large flange)

② Material code (AS and SS * See the specification table.)

③ Size code (* See the specification table.)

④ Rivet type (FX)

■ AS specification table

AS (Sleeve: Aluminum A5052 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	diameter diameter		Recommended fastening range	l (mm)	L*2 (mm)	D (mm)	H (mm)	M (mm)	Strei (ki	ngth*3 N)
W(mm)	(mm)	code	G(mm)	(111111)	(111111)	(111111)	Large flange	(111111)	Tensile	Shear
3.2	3.3 +0.1 0	401	0.8 ~ 4.7	8.1	10.2	8.0	1.0	1.92	1.0	0.7
		501	1.2 ~ 6.3	9.3	11.8					
4.0	4.1 +0.1	502	4.0 ~ 9.5	13.0	15.5	12.0	1.5	2.42	1.5	1.1
		503	6.4 ~ 12.7	18.0	20.5					
4.8	4.9 +0.1	601	1.6 ~ 6.4	10.5	13.4	15.5	2.0	2.94	2.5	1.7
4.6	4.9 0	602	4.8 ~ 11.4	15.8	18.7	13.3	2.0	2.94	2.3	1./

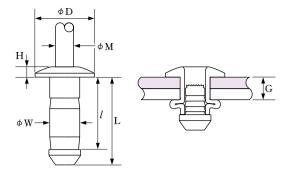
■ SS specification table

SS (Sleeve: Steel SWCH / trivalent chromate, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter diameter		Size code	Recommended fastening range	l (mm)	L*2 (mm)	D (mm)	H (mm)	M (mm)	Strength*3 (kN)	
W(mm)	(mm)	code	G(mm)	(111111)	(111111)	(111111)	Large flange	(111111)	Tensile	Shear
		601	1.6 ~ 6.4	10.5	13.6					
4.0	4.9 +0.1	602	4.8 ~ 11.4	15.8	18.9	15.5	2.0	2.12	2.4	2.6
4.8	4.9 0	603	8.4 ~ 12.7	17.9	21.0	15.5	2.0	3.12	3.4	2.6
		604	12.7 ~ 19.8	25.9	29.0					

^{*1.} Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.


- (2) The steel sleeve is plated with trivalent chromate.
- (3) The standard dimensions are subject to change without notice.
- (4) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.

The large-diameter fastens the workpieces tightly together.

Symbols of standard dimensions and installation diagram

Product code

 $\underset{\tiny \textcircled{1}}{\underline{D}} \; \underset{\textcircled{2}}{\underline{CC}} \; \underset{\textcircled{3}}{\underline{66}} \; \underset{\textcircled{4}}{\underline{GT}}$

① Flange shape code (D: Round head)

② Material code (CC * See the specification table.)③ Size code (* See the specification table.)

④ Rivet type (GT)

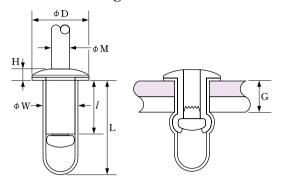
CC specification table

CC (Sleeve: Austenitic stainless steel / fabric, Mandrel: High-tensile stainless steel wire / fabric)

Sleeve diameter W(mm)	Mating hole diameter (mm)	Size code	Recommended fastening range G(mm)	l (mm)	L*1 (mm)	D (mm)	H (mm) Round head	M (mm)	Stre. (k	ngth*2 N) Shear
4.8	4.0 +0.1	64	3.2 ~ 4.8	12	14.5	0.5	1.7	2.2	5.4	4.5
4.8	4.9 0	66	6.4 ~ 8.6	15	17.5	9.5	1.7	3.2	5.4	8.5

^{*1.} The L lengths are given as guideline. *2. The strength values are obtained through our own testing.

Remarks) (1) The standard dimensions are subject to change without notice.


(2) Please ask us when the required fastening range exceeds the recommended range or when it is around the lower limit.

$CP\ Type\ /{}^{\tiny{Maximum\ sealing}}_{\tiny{(Round\ head)}}$

The rivet provides maximum air sealed fastening, thanks to its plastic cap. It also prevents galvanic corrosion between different metals.

Symbols of standard dimensions and installation diagram

■ Product code

$\underset{\tiny{\textcircled{1}}}{\underline{D}} \ \underset{\tiny{\textcircled{2}}}{\underline{AS}} \ \underbrace{543}_{\tiny{\textcircled{3}}} \ \underset{\tiny{\textcircled{4}}}{\underline{CP}}$

① Flange shape code (D: Round head)

② Material code (AS and AA * See the specification table.)

③ Size code (* See the specification table.)

④ Rivet type (CP)

Airtightness

There will be no water leakage under the pressure test conditions below.

Product	DAS543
Work hole diameter	4.1 mm
Pressurizing time	8 hours
Pressure	0.9 MPa

■ AS specification table

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	diameter diameter		fastening range		L*1 (mm)	D (mm)	H (mm)	M (mm)	Strength*2 (kN)	
W(mm)	(mm)	code	G(mm)	(mm)	(111111)	(IIIII)	Round head	(111111)	Tensile	Shear
		541	1.0 ~ 1.6	4.6						
4.0	4.1 +0.1	542	1.6 ~ 3.2	6.2	12.0	6.4	1.3	1.85	1.1	0.9
		543	3.2 ~ 4.8	7.8						

■ AA specification table

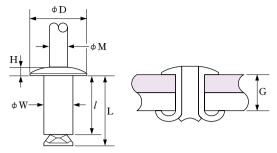
AA (Sleeve: Aluminum A5052 / fabric, Mandrel: High-tensile aluminum wire / fabric)

Sleeve diameter W(mm)	Mating hole diameter (mm)	Size	Recommended fastening range G(mm)	l (mm)	L*1 (mm)	D (mm)	H (mm)	M (mm)	Stre (k	ngth*2 N) Shear
		541	1.0 ~ 1.6	4.9						
4.0	4.1 +0.1	542	1.6 ~ 3.2	5.7	12.0	6.4	1.3	2	0.4	0.66
		543	3.2 ~ 4.8	7.3						

This product is made to order.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.

- (2) The standard dimensions are subject to change without notice.
- (3) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.
- (4) Due to the nature of the plastic cap, outdoor use is not recommended.


^{*1.} The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

PL Type / For soft materials (Round head • Countersunk)

The sleeve spreads widely in four petal-like parts that fasten the materials together. It is mainly used to fasten soft materials, such as plywood and plastic.

Symbols of standard dimensions and installation diagram

(Round head)

Product code

 $\frac{D}{D} \stackrel{AS}{=} \frac{53}{D} \stackrel{PL}{=}$

① Flange shape code (D: Round head and K: Countersunk) 2 Material code (AS * See the specification table.)

③ Size code (* See the specification table.)

4 Rivet type

φD (Countersunk)

■ AS specification table

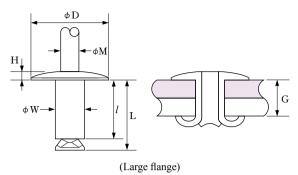
AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code		fastening range nm)	<i>l</i>	L*2	D		H um)	M	Stre (k	ngth ^{*3} N)
W(mm)	(mm)	code	Round head	Countersunk*1	(mm)	(mm)	(mm)	Round head	Countersunk*1	(mm)	Tensile	Shear
		43	1.0 ~ 4.5	1.3 ~ 4.5	8.1	10.1						
2.2	3.4 +0.1	44	4.5 ~ 6.0	4.5 ~ 6.0	9.7	11.7	6.4	1.0	1.1	1.05	0.8	0.0
3.2	3.4 0	46	6.0 ~ 9.2	6.0 ~ 9.2	12.9	14.9	0.4	1.0	1.1	1.85	0.8	0.8
		48	9.2 ~ 12.4	9.2 ~ 12.4	16.8	18.8						
		52	1.0 ~ 2.6	1.6 ~ 2.6	7.3	9.7						
		53	1.2 ~ 4.5	2.0 ~ 4.5	8.9	11.3						
4.0	4.2 +0.1	54	4.5 ~ 6.1	4.5 ~ 6.1	10.5	12.9	8.0	1.2	1.4	2.25	1.3	1.3
		56	6.1 ~ 9.3	6.1 ~ 9.3	13.7	16.1						
		58	9.3 ~ 12.5	9.3 ~ 12.5	16.9	19.3						
		63	1.5 ~ 4.6	1.8 ~ 4.6	9.7	12.4						
		64	4.6 ~ 6.1	4.6 ~ 6.1	11.3	14.0						
4.8 5.0	5.0 +0.1	66	6.1 ~ 9.2	6.1 ~ 9.2	14.5	17.2	9.5	1.5	1.6	2.65	2.0	2.1
		68	9.2 ~ 12.3	9.2 ~ 12.3	17.7	20.4						
		610	12.3 ~ 15.5	12.3 ~ 15.5	20.9	23.6						

^{*1.} Countersunk rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

Remarks) (1) The mandrel is plated with zinc. (Zinc plating is recommended because of the capability of PL rivets.)

(2) The standard dimensions are subject to change without notice.


(3) Please ask us when the required fastening range exceeds the recommended range or when it is around the lower limit.

Warning Do not point the rivet setter at another person while riveting. (The mandrel may be broken and the head may fly out.)

$PL\ Type\ / \text{For soft materials} \\ \text{(Large flange}^{*1})$

Symbols of standard dimensions and installation diagram

Product code

 $\frac{LF}{Q} = \frac{AS}{Q} = \frac{53}{3} = \frac{PL}{4}$

① Flange shape code (LF: Large flange)

② Material code (AS * See the specification table.) ③ Size code (* See the specification table.)

④ Rivet type

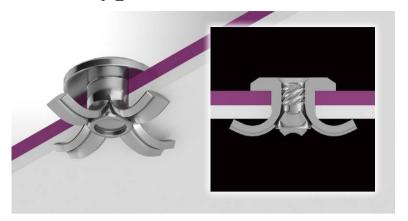
■ AS specification table

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

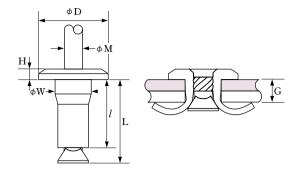
Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l (mm)	L*2 (mm)	D (mm)	H (mm)	M (mm)	Stre.	ngth*3 N)
W(mm)	(mm)	code	G(mm)	(111111)	(11111)	(11111)	Large flange	(111111)	Tensile	Shear
		43	1.0 ~ 4.5	8.1	10.1					
3.2	3.4 +0.1	44	4.5 ~ 6.0	9.7	11.7	8.0	1.0	1.85	0.8	0.8
3.2	3.4 0	46	6.0 ~ 9.2	12.9	14.9	9.5	1.2	1.65	0.8	0.6
		48	9.2 ~ 12.4	16.8	18.8					
		52	1.0 ~ 2.6	7.3	9.7					
		53	1.2 ~ 4.5	8.9	11.3	40.0				
4.0	4.2 +0.1	54	4.5 ~ 6.1	10.5	12.9	10.0 12.0	1.3 1.5	2.25	1.3	1.3
		56	6.1 ~ 9.3	13.7	16.1	12.0	1.3			
		58	9.3 ~ 12.5	16.9	19.3					
		63	1.5 ~ 4.6	9.7	12.4					
		64	4.6 ~ 6.1	11.3	14.0	12.0	1.7			
4.8	4.8 $5.0^{+0.1}_{0}$	66	6.1 ~ 9.2	14.5	17.2	13.0	1.8	2.65	2.0	2.1
		68	9.2 ~ 12.3	17.7	20.4	15.5	2.0			
		610	12.3 ~ 15.5	20.9	23.6					

^{*1.} Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

Remarks) (1) The mandrel is plated with zinc. (Zinc plating is recommended because of the capability of PL rivets.)


(2) The standard dimensions are subject to change without notice.

(3) Please ask us when the required fastening range exceeds the recommended range or when it is around the lower limit.


Warning Do not point the rivet setter at another person while riveting. (The mandrel may be broken and the head may fly out.)

$PLX\ Type\ / \ ^{\rm Mandrel\ head\ fixed\ type}_{\rm (Round\ head)}$

Fastening the fixed mandrel head will reduce abnormal noise and stop running water.

Symbols of standard dimensions and installation diagram (PAT 5643122)

■ Product code

 $\frac{D}{Q} = \frac{AS}{Q} = \frac{64}{Q} = \frac{PLX}{Q}$

① Flange shape code (D: Round head)

② Material code (AS and AC * See the specification table.)

③ Size code (* See the specification table.)

④ Rivet type (PLX)

■ AS specification table

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter W(mm)	Mating hole diameter (mm)	Size code	Recommended fastening range G(mm)	l (mm)	L*1 (mm)	D (mm)	H (mm)	M (mm)		ngth*2 N) Shear
4.0	c 1 +0.1	63	2.0 ~ 4.0	9.6	12.0	0.5	2.6	2.65	2.1	2.5
4.8	5.1 0	64	2.5 ~ 5.0	12.2	14.6	9.5	2.6	2.65	2.1	2.5

■ AC specification table

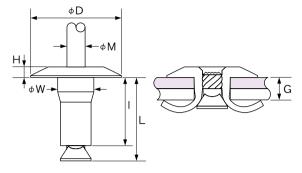
AC (Sleeve: Aluminum A5154 / fabric, Mandrel: High-tensile stainless steel wire / fabric)

Sleeve diamete W(mm)		Size code	Recommended fastening range G(mm)	l (mm)	L*1 (mm)	D (mm)	H (mm) Round head	M (mm)		ngth*2 N) Shear
2.4	2.6 +0.1 0	34	3.7 ~ 6.0	8.9	10.4	4.7	0.8	1.48	0.69	1.0

This product is made to order.

*1. The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The mandrel is plated with zinc.


- (2) Please ask us when the required fastening range exceeds the recommended range
- (3) Specification of the rivet will be designed based on work material, thickness, and diameter of mating hole. Please inquire us for details.
- (4) The standard dimensions are subject to change without notice.

$PLX \; Type \; / \substack{\text{Mandrel head fixed type} \\ \text{(Large flange)}}$

Fastening the fixed mandrel head will reduce abnormal noise and stop running water.

■ Symbols of standard dimensions and installation diagram (PAT 5643122)

(Large flange)

■ Product code

 $LF_{\tiny{\tiny{1}}} AS_{\tiny{\tiny{2}}} 64_{\tiny{\tiny{3}}} PLX_{\tiny{\tiny{4}}}$

① Flange shape code (LF: Large flange)

② Material code (AS and AC * See the specification table.)

③ Size code (* See the specification table.)

④ Rivet type (PLX)

■ AS specification table

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l (mm)	L*1 (mm)	D (mm)	H (mm)	M (mm)	Strength*2 (kN)	
W(mm)	(mm)	code	G(mm)	(11111)	(111111)	(11111)	Large flange	(11111)	Tensile	Shear
4.8	5.1 +0.1	64	2.5 ~ 5.0	12.7	14.4	12	2.6	2.65	2.1	2.5

■ AC specification table

AC (Sleeve: Aluminum A5154 / fabric, Mandrel: High-tensile stainless steel wire / fabric)

Sleeve diameter	diameter diameter		Recommended fastening range	l (mm)	L*1 (mm)	D (mm)	H (mm)	M (mm)	Strength*2 (kN)	
W(mm)	(mm)	code	G(mm)	()	()		Large flange	(11111)	Tensile	Shear
4 4.2	42 +0.1	53	3.5 ~ 4.3	8.9	10.8	11	1.5	2.23	1.5	1.5
	4.2 0	56	6.1 ~ 9.3	13.7	15.6	16	2	2.23		1.5

This product is made to order.

*1. The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The mandrel is plated with zinc.

- (2) Please ask us when the required fastening range exceeds the recommended range.
- (3) Specification of the rivet will be designed based on work material, thickness, and diameter of mating hole. Please inquire us for details.
- (4) The standard dimensions are subject to change without notice.

$HL\ Type\ / {}^{\rm Lower\ buckling}_{\rm (Round\ head)}$

Product code

 $\underset{\tiny{\bigcirc}}{\underline{D}} \underset{\tiny{\bigcirc}}{\underline{AS}} \underset{\tiny{\bigcirc}}{\underline{5G100}} \underset{\tiny{\bigcirc}}{\underline{HL}}$


① Flange shape code (D: Round head)

② Material code (AS * See the specification table.) ③ Size code (* See the specification table.)

④ Rivet type

By maintaining the height of the buckling side low, different design variations are available.

Symbols of standard dimensions and installation diagram

■ AS specification table

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size*1 code	Recommended fastening range	/*1 (mm)	L*1	A*2 (mm)	D (mm)	H (mm)	M	Strength*1 (kN)	
W(mm) (mm)	code	G(mm)*1	(11111)	(mm)	(111111)	(11111)	丸頭	(mm)	Tensile	Shear	
3.2	3.3 +0.1	4G***	***	***	***	1.3	6.4	1	1.83	***	***
4.0	4.1 +0.1	5G***	***	***	***	1.5	6.7	1.0	2.28	***	***

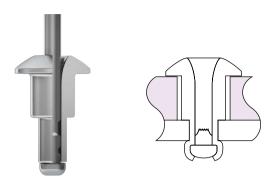
This product is made to order.

*1. Size code, recommended fastening range, I, L and strength vary depending on the use conditions. *2. The A lengths are given as guidelines.

Remarks) (1) The mandrel is plated with zinc.

- (2) The standard dimensions are subject to change without notice.
- (3) Specification of the rivet will be designed based on work material, thickness, and diameter of mating hole. Please inquire us for details.

Warning Do not point the rivet setter at another person while riveting. (The mandrel may be broken and the head may fly out.)

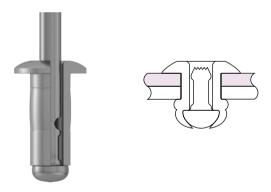

Examples of Customized Rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don't hesitate to ask us.

■ Stepped rivet

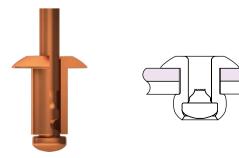
Features: The height from the seating surface of a workpiece to the flange of a fastened rivet is constant, which serves as a fulcrum pin or a spring catch.

Uses : Glass louvers, bars and handles



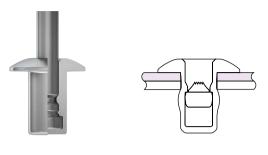
■ Improved-shear-strength type

Features: The mandrel is brought up to near the head height to


enhance the shear strength.

Uses : Reinforcing plates

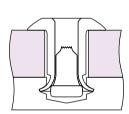
Conductive rivet


Features: The sleeve and mandrel are made of copper alloy.
Uses: Terminal blocks, contacts and connectors

■ Sealed type

Features: The sleeve is bag-shaped and great in air tightens.

Uses : Shield plugs, outdoor devices and covers



■ Blind hole fitting type

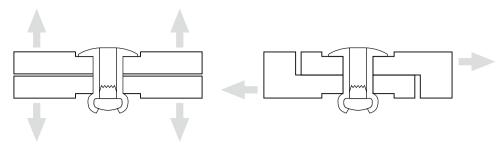
Features: This rivet can be fastened into a blind hole in the materials.

Uses : Building outer and inner walls, cement, and wood

Strength Test Methods and Galvanic Corrosion

■ Tensile/shear strength test methods

(for blind rivet)


Test conditions

[Test specimen]

- Material : Heat-treated steel plate
- Thickness: 80-100% of recommended fastening range
- Work hole diameter: Recommended work hole diameter

[Testing machine]

- Testing machine: Compliant with the JIS B 7721
- Test speed: 15 mm/min

[Tensile strength test]

[Shear strength test]

- 1. The methods for strength test, tensile strength test, shear test comply with JIS B 1087.
- 2. The strength values given in the brochure are measurement results obtained by our testing. They may vary with the type or thickness of materials used. In designing, be sure to allow a safety factor of at least three.

■ Galvanic corrosion (dissimilar metal corrosion)

When different metals are in contact with each other, if moisture is present, a potential difference between the metals will cause partial electrification and cause corrosion. This is called galvanic corrosion. Even when the base material and the rivet fastened to it are both resistant to corrosion, when they come into contact with each other, galvanic corrosion may occur. The areas of the base material and the rivet may affect the progression of corrosion.

Base material and rivet for fastening

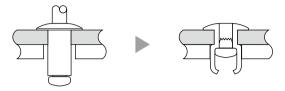
Conditions triggering galvanic corrosion	Corrosion prevention measures
The potential difference is large.	Use materials with a smaller potential difference. Reduce the potential difference, e.g., by plating.
Metals are in contact with moisture.	Protect with a plastic or other insulators. Insulate by painting.
The atmosphere is hot and humid.	Protect with a plastic or other insulators. Insulate by painting.
The material of the rivet is low-potential metal (base metal).	Make sure that the material of the rivet has a higher potential (noble) than the base material.

Galvanic series in sea water

Potential	Meta	1
-1.50	Magnesium	Base metal
-1.03	Zinc	(corrosion side)
-0.74	Aluminum (5000 series)	·
-0.61	Carbon steel	
-0.45	Solder (50/50)	
-0.42	Tin	
-0.36	Brass	
-0.36	Copper	
-0.22	SUS430 (passive)	
-0.20	Nickel	
-0.15	SUS410	
-0.15	Titanium (industrial)	
-0.13	Silver	
-0.10	Titanium (high purity)	
-0.08	SUS304	_
-0.05	SUS316	▼ Noble metal
0.26	Platinum	(corrosion-proof side)

Fastening condit	ions (combination)			Progression	Fastening
Rivet material	Workpiece material	Galvanic corrosion example		of corrosion	reliability
Aluminum	Stainless steel	Corrosion of the rivet (the area in contact with the base material) advances very fast.Example under extremely severe condition	Aluminum Galvanic cornosion Stainless steel	Fast	×
Stainless steel	Aluminum	Corrosion of the base material (the area in contact with the rivet) advances. When the base material has a large area of corrosions, the progression of corrosion is relatively slow and the materials can be used depending on usage environment (please ask us).	Stainless steel Galvanic cornosion		Δ
Aluminum	Steel (zinc plating)	Corrosion of the zinc coat of the base material (the area in contact with the rivet) advances first and then corrosion of the rivet begins to advance. The progression of corrosion is slow and the materials can be used depending on usage environment (please ask us).	Aluminum Galvanic corrosion		Δ
Steel (zinc plating)	Aluminum	Corrosion of the zinc coat of the rivet (the area in contact with the base material) advances first and then corrosion of the base material begins to advance. The progression of corrosion is very slow and the materials can be used depending on usage environment (please ask us).	Steel Galvanic corrosion	Slow	0

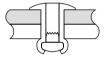
Design Guidelines for blind rivet

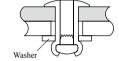

■ Mating hole of workpiece

Recommended diameter of the mating hole: rivet's nominal diameter +0.1mm

*Please refer to the specification table. If the diameter of the mating hole is larger than the recommended size, it may result in fastening failure or insufficient fastening strength.

1. In the case where the hole diameter of buckling side is larger than the recommended size:


Example of improper fastening

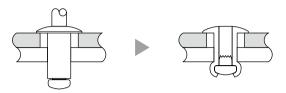


If the hole diameter of buckling side is larger than the recommended hole diameter

The mandrel head may penetrate into the workpiece, resulting in insufficient fastening strength or breakage of the workpiece.

Example of proper fastening

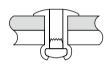
Countermeasure 1

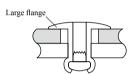

Match the hole diameter to the recommended size.

Countermeasure 2

Insert a metal washer with a hole diameter equivalent to the recommended size.

2. In the case where the hole diameter of flange side is larger than the recommended size:


Example of improper fastening



If the hole diameter of flange side is larger than the recommended hole diameter...

The workpieces cannot be held firmly, resulting in insufficient fastening strength.

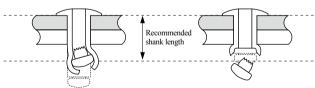
Example of proper fastening

Countermeasure 1

Match the hole diameter to the recommended size.

Countermeasure 2

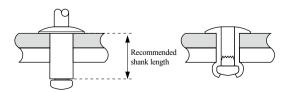
Change the flange to a large flange to improve the retention of the workpieces.


■ Shank length

Please use the rivet of the recommended size for the thickness of the workpiece. Fastening with a rivet of improper size may result in fastening failure or insufficient fastening strength.

Example of improper fastening

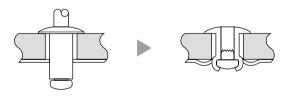
(If the rivet is longer than the recommended size...)


(If the rivet is shorter than the recommended size...)

Buckling or fastening failure may occur.

The mandrel head may fall off, or the fastening strength may become insufficient

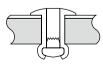
Example of proper fastening

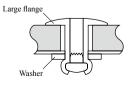


Selecting rivets with the proper size for the workpiece thickness will stabilize fastening quality.

■ Fastening of thin and thick workpieces (metal-to-metal)

When fastening thin and thick metal workpieces, it is recommended that the side of thick metal workpiece, which has higher strength, be the buckling side.


Example of improper fastening



If the hole diameter of the thick workpiece is larger than that of the thin workpiece...

The mandrel may penetrate into the hole and deform the thin workpiece, resulting in fastening failure.

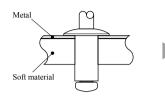
Example of proper fastening

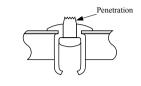
Countermeasure 1

Match the hole diameter to the recommended size and set the thick workpiece with higher strength to be the buckling side.

Countermeasure 2

Change the flange to a large flange and insert a metal washer with a hole diameter equivalent to the recommended size.

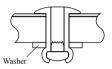

■ Fastening of Soft Material Workpiece


When fastening a soft material workpiece (e.g. plastic, plywood, rubber) and a metal workpiece, the retention and fastening strength of the workpieces may decrease due to penetration of the mandrel head into the workpiece, or deformation or damage of soft materials. Preliminary fastening test is highly recommended.

*For soft material workpieces, the larger the diameter of the mating hole, the more likely it is that fastening failure will occur.

1. In the case where a soft material workpiece is on the buckling side:

Example of improper fastening



If the soft material workpiece is on the buckling side...

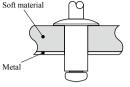
The mandrel head may penetrate deep into the workpiece, resulting in insufficient fastening strength, or the broken mandrel may penetrate through the flange.

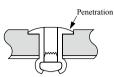
Example of proper fastening

Countermeasure 1

Insert a metal washer on the buckling side.

Countermeasure 2

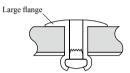

Use PLX (PL) Type.

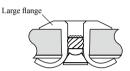

*Preliminary fastening test is required.

2. In the case where a soft material workpiece is on the flange side:

Example of improper fastening

material





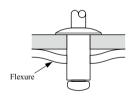
If the soft material workpiece is fastened with a Standard Type rivet...

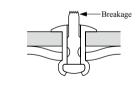
The flange may penetrate deep into the soft material workpiece, resulting in deformation or breakage of the workpiece.

Example of proper fastening

Countermeasure 1

Change the flange to a large flange to distribute the pressure.

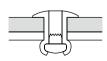

Countermeasure 2

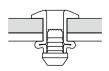

Combine the large flange and PLX Type to improve the retention of the workpieces.

■ Fastening of workpiece with flexure

If trying to fasten a workpiece with flexure, the elasticity of the workpiece may cause the mandrel to break in the middle or result in incomplete fastening.

Example of improper fastening





If trying to fasten a workpiece with flexure...

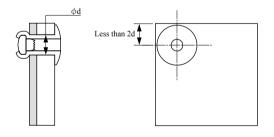
The elastic force of the workpiece is transmitted to the mandrel, and the mandrel may break off in the middle of the shank or break during fastening.

Example of proper fastening

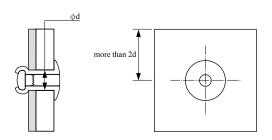
Countermeasure 1

Prepare workpieces with no flexure

Countermeasure 2


Use FX or GT Type with high fastening force (pulling force)
*Preliminary fastening test is required.

Fastening on the corner or the edge


To ensure stable fastening strength, the distance from the edge of the workpiece to the center of the rivet should be at least twice the nominal diamter (d) of the rivet

* If the distance is less than twice, the fastening condition may become unstable.

Example of improper fastening

Example of proper fastening

SEMI-TUBULAR RIVET

Secure and uniform fastening is user friendly.

Structure of semi-tubular rivet

Features

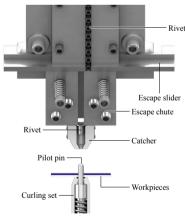
Easy fastening

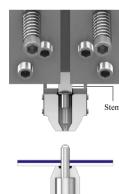
A semi-tubular rivet can be easily and quickly fastened using a rivet setter without any special skills.

Rivet design tailored to specific purpose

Semi-tubular rivets can be made of various materials. They can be tailored to various requirements, such as conductivity and decorative design.

Stable and reliable fastening

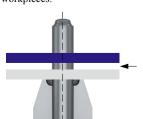

A semi-tubular rivet does not loosen easily and that provides reliable fastening. The rivet installation can be checked visually.


Improvement in working efficiency


Using the rivet instead of the screw, bolt or nut; the assembly efficiency can be drastically improved.

■ Fastening process

- ① Insert the pilot pin into the workpieces.
 - 2 The stem descends, pressing the rivet head.
- 3) At the same time, the catcher descends, holding the rivet.
- 4 Guided by the pilot pin, the rivet goes through the workpieces and fastening is complete.



Operating precautions

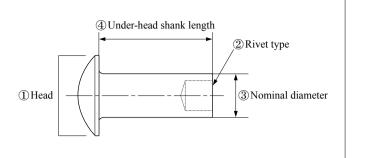
If the rivet is installed in the situations below, it may result in improper fastening.

- (1) The workpieces are tilted.
- (2) There is a gap between the workpieces.

(3) The pilot pin is not fully out, and interfere with the workpieces.

(4) The curling set is worn.

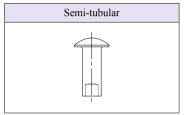
Name


$\underset{\tiny{\bigcirc}}{\underline{\text{Low round}}}\, \underset{\tiny{\bigcirc}}{\underline{\text{Semi-tubular}}}\, \underset{\tiny{\bigcirc}}{\underline{3}} \times \underset{\tiny{\bigcirc}}{\underline{5}}$

① Type of head (Low round, truss, flat, countersunk and round)

② Rivet type (Semi-tubular)

③ Nominal diameter (See the specification table.)


④ Under-head shank length (See the specification table.)

Types of heads

Low round	Truss	Flat	Countersunk	Round head

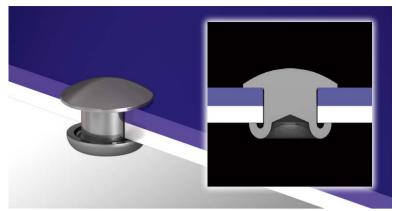
■ Rivet type

■ Types of materials and relevant JIS

	Materials		Relevant JIS		
D	escription	Code	Refevant 313		
Iron	Carbon steel wire	SWCH	JIS G 3507 "Carbon steels for cold heading"		
Brass	Brass wire	C2700W			
Copper	Tough pitch copper wire	C1100W	JIS H 3260 "Copper and copper alloy wires"		
	Aluminum drawn	A1070W			
Aluminum	wire	A1200W	JIS H 4040 "Aluminum or aluminum alloy		
Alummum	Aluminum alloy	A5052W	wire"		
	drawn wire	A5056W			
Stainless	Stainless steel	SUS430-WR	JIS G 4308 "Stainless steel wire"		
steel	wire	SUSXM7-WR	JIS G 4506 Stanness steet wire		

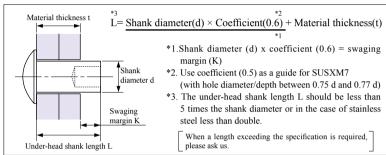
■ Surface treatment

Types of treatment	Characteristics					
Zinc plating	Corrosion resistance					
Trivalent chromate on zinc plating	Corrosion resistance					
Nickel plating	Decorativeness, Abrasion resistance					
Copper plating	Conductivity					
Tin plating	Solderability					
Gold plating	Conductivity, Corrosion resistance, Decorativeness					
Silver plating	Conductivity, Decorativeness					
Chrome plating	Corrosion resistance, Abrasion resistance, Decorativeness					

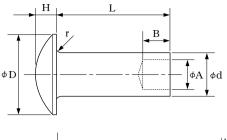

■ Strength test results by material and shank diameter

Unit (kN)

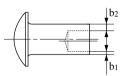
	Nominal diameter		φ1.2	φ1.6	φ2	φ2.5	φ3	φ4	φ5	φ6	φ8
	SWCH10A	Tensile	0.29	0.49	0.85	1.23	1.69	3.00	4.69	6.76	12.02
	SWCIIIOA	Shear	0.34	0.61	0.96	1.50	2.17	3.86	6.03	8.68	15.43
	SUS430	Tensile	0.39	0.66	1.14	1.66	2.27	4.03	6.31	9.08	16.15
	505450	Shear	0.45	0.80	1.26	1.97	2.84	5.05	7.89	11.36	20.20
	SUSXM7	Tensile	0.48	0.81	1.39	2.03	2.77	4.93	7.71	11.10	19.74
	SUSAWI7	Shear	0.51	0.91	1.42	2.23	3.21	5.71	8.93	12.86	22.86
	C2700W	Tensile	0.28	0.47	0.81	1.18	1.62	2.88	4.50	6.48	11.53
		Shear	0.31	0.55	0.86	1.35	1.95	3.47	5.42	7.81	13.89
Material	C1100W	Tensile	0.17	0.29	0.50	0.73	0.99	1.77	2.77	3.99	7.09
Mat		Shear	0.20	0.37	0.58	0.90	1.30	2.32	3.63	5.23	9.30
	A1070W	Tensile	0.07	0.12	0.20	0.28	0.40	0.71	1.16	1.76	2.85
	A10/0W	Shear	0.10	0.18	0.27	0.44	0.60	1.07	1.61	2.25	4.12
	A1200W	Tensile	0.07	0.13	0.20	0.28	0.40	0.71	1.18	1.79	2.88
	A1200 W	Shear	0.11	0.18	0.31	0.46	0.60	1.13	1.74	2.33	4.26
	A5052W	Tensile	0.13	0.23	0.39	0.54	0.74	1.34	2.18	3.15	5.43
	A3032 W	Shear	0.20	0.35	0.56	0.91	1.18	2.21	3.40	4.56	8.32
	A 5056W	Tensile	0.17	0.29	0.47	0.60	0.94	1.46	2.61	3.78	6.73
	A5056W	Shear	0.23	0.40	0.62	1.00	1.30	2.46	3.80	5.20	9.25


Note) Each of the results above is the measured strength of a rivet alone.

Low, Round Semi-Tubular Rivet

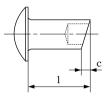

 $[MOVIE]\ http://www.byora.co.jp/index/products/movies/semi-tubular.html$

Calculation of under-head shank length



The length obtained by this calculation shall be used as a guide.

Shape and symbols of standard dimensions



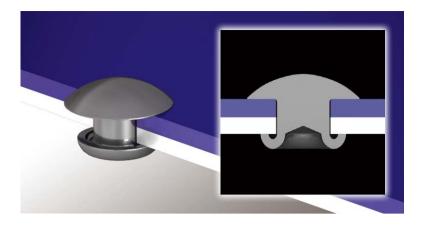
(Eccentricity of head)

(Eccentricity of hole)

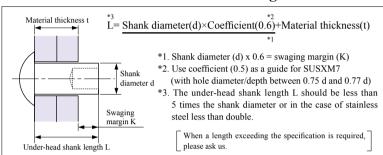
(Tilt of head) (Tilt of end face)

Specific	cation tab	ole								Unit (mm)
Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance	+ 0.02 - 0.05			0 - 0.08		- 0	.10	0 - 0.12	0 - 0.15
	Standard	2.2	3	3.7	4.6	5.4	7.2	9	10.5	13.5
D	Tolerance	0 - 0.3				0 - 0.4		0 - 0.5		0 0.6
Н	Standard	0.3	0.4	0.6	0.9	1.1	1.4	1.8	2.1	2.8
н	Tolerance		± (0.05						
A	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
	Tolerance	± 0.04			0.05 ± 0.07				± 0.10	
В	Standard	1.1	1.4	1.8	2.3*4	2.7*4	3.6*4	4.5*4	5.4	7.2
D	Tolerance	± (0.1	± ().15 ± 0.2		± 0.25 ± 0		0.3	
r	Max	0.06	0.08	0.1	0	.2	0.3		0.4	
a1-a2	Max	0.1			0.2			0	.3	0.4
b1-b2	Max		0.1			0.15			0.2	
c	Max		0.2		0	.3		0.4		0.5
L	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance		+ ().05		± 0.05				± 0.10

^{*4.} When length L is close to the minimum or maximum, length B shall be 0.8 x d. For details, see the length B list below.

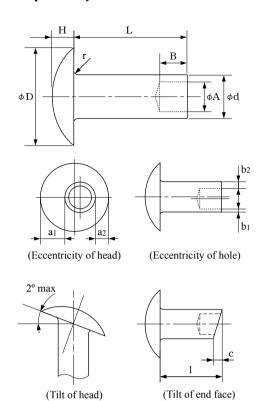

■ Tolerance of length L

	Tolerance of length L Unit (mm)										
	Nominal diameter	1.2	1.6	2	2.5	3	4	5	6	8	
	4 or below	± 0.1			± 0.15		_				
Г	Over 4 to 10		± 0.15		± 0.2		± 0.25				
Length	Over 10 to 20	± 0.2			± 0.25		± 0.3				
Le	Over 20 to 40	_			± 0.3		± 0.4				
	Over 40	_			_		± 0.5				


Length B list

Nominal diameter	2.5		3	4			5
Length L	3	3 3.5		4.5	5	5.5	6
Length B	2	.0	2.4		3.2		4.0

Truss Semi-Tubular Rivet



Calculation of under-head shank length

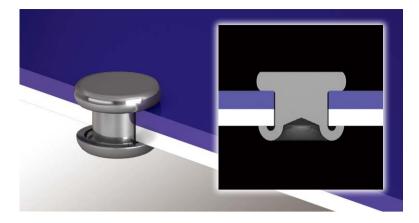
The length obtained by this calculation shall be used as a guide.

Shape and symbols of standard dimensions

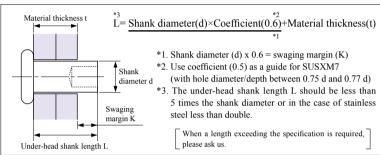
Specification table

Specific	cation tab	ole								Unit (mm)
Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance		+ 0.02 - 0.05		0	.08	0 - 0			0 - 0.15
	Standard	2.7	3.6	4.5	5.6	6.6	8.8	11	13	17
D	Tolerance			0 0.3		1)).4	0 - 0.5		0 0.6
Н	Standard	0.5	0.7	1	1.3	1.4	1.8	2.4	2.8	3.8
п	Tolerance		± (0.05				± 0.1		
Α.	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
A	Tolerance	± 0.04 ± 0.				± 0	.07		± 0.10	
В	Standard	1.1	1.4	1.8	2.3*4	2.7*4	3.6*4	4.5*4	5.4	7.2
Б	Tolerance	± (0.1	± 0	.15	± 0.2		± 0.25	± 0.25 ±	
r	Max	0.1	0.15	0.15	0.2	0.	.3	0.4	0.5	0.6
a1-a2	Max	0.1			0.2			0	.3	0.4
b1-b2	Max		0.1			0.15			0.2	
С	Max		0.2		0	.3		0.4		0.5
L	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	work hole + 0.05			± 0.05				± 0.10		

^{*4.} When length L is close to the minimum or maximum, length B shall be 0.8 x d. For details, see the length B list below.

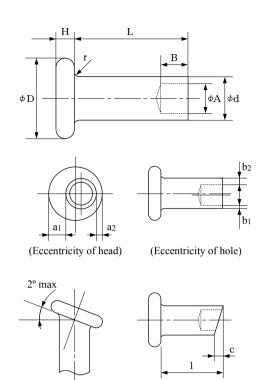

Tolerance of length L

	Tolerance of length L Unit (mm)										
Nominal diameter 1.2 1.6 2 2.5 3 4 5 6									8		
	4 or below	± 0.1			± 0	.15		-	_		
Т	Over 4 to 10		± 0.15		± 0.2		± 0.25				
Length	Over 10 to 20		± 0.2		± 0	.25	± 0.3				
Le	Over 20 to 40	_			± 0.3		± 0.4				
	Over 40		_		_		± 0.5				


Length B list

Nominal diameter	2.5		3		5		
Length L	3	3.5	3.5	4.5	5	5.5	6
Length B	2	.0	2.4		3.2		4.0

Flat Semi-Tubular Rivet



■ Calculation of under-head shank length

The length obtained by this calculation shall be used as a guide.

■ Shape and symbols of standard dimensions

Specification table

Τ.	r:4	1	'
	nıt	ım	m

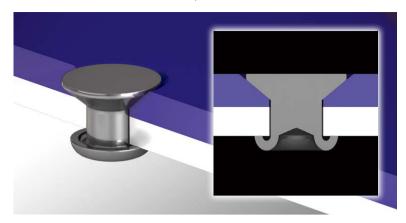
(Tilt of end face)

Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance		+ 0.02 - 0.05		- 0		-0	.10	0 - 0.12	0 - 0.15
	Standard	2.2	3	3.7	4.6	5.4	7.2	9	10.5	13.5
D	Tolerance			0.3			$0 \\ -0.4$		- (
Н	Standard	0.3	0.4	0.6	0.9	1.1	1.4	1.8	2.1	2.8
п	Tolerance		± 0	0.05				± 0.1		
	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
A	Tolerance	± 0	.04	± 0	0.05	± 0	0.07		± 0.10	
В	Standard	1.1	1.4	1.8	2.3*4	2.7*4	3.6*4	4.5*4	5.4	7.2
Б	Tolerance	± (0.1	± 0	.15	± (0.2	± 0.25 ± 0		0.3
r	Max	0.06	0.08	0.1	0	.2	0	.3	0	.4
a1-a2	Max	0.1			0.2			0	.3	0.4
b1-b2	Max		0.1			0.15			0.2	
c	Max		0.2		0	.3		0.4		0.5
L	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance		+ 0).05			± 0	0.05		± 0.10

^{*4}. When length L is close to the minimum or maximum, length B shall be 0.8~x d. For details, see the length B list below.

■ Tolerance of length L

Unit	(mm
------	-----

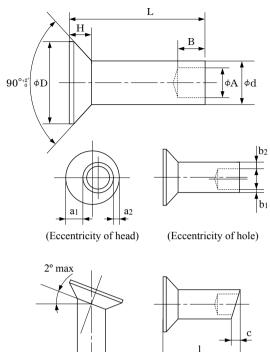

		S Cint (min)								
	Nominal diameter	1.2	1.6	2	2.5	3	4	5	6	8
	4 or below	± 0.1			± 0	.15		-	-	
T	Over 4 to 10		± 0.15		± 0	.2	± 0.25			
Length	Over 10 to 20	± 0.2			± 0	.25	± 0.3			
Le	Over 20 to 40	_			± 0.3		± 0.4			
	Over 40	_		_		± 0.5				

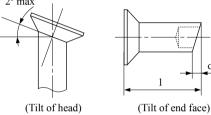
Length B list

(Tilt of head)

Nominal diameter	2.5		3		5		
Length L	3	3.5	3.5	4.5	5	5.5	6
Length B	2	.0	2.4		3.2		4.0

Countersunk, Semi-Tubular Rivet

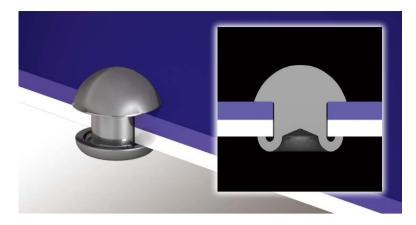



Calculation of under-head shank length

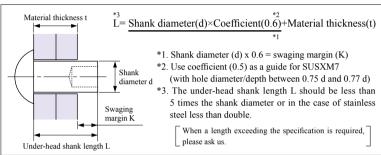
$\stackrel{*_3}{L} = Shank \; diam\underline{eter(d)} \times Coefficient(\underbrace{0.6}^{*_2}) + Material \; thickness(t)$ *1. Shank diameter (d) x 0.6 = swaging margin (K) *2. Use coefficient (0.5) as a guide for SUSXM7 (with hole diameter/depth between 0.75 d and 0.77 d) *3. The under-head shank length L should be less than 5 times the shank diameter or in the case of stainless Swaging margin K steel less than double. When a length exceeding the specification is required,

The length obtained by this calculation shall be used as a guide.

Shape and symbols of standard dimensions

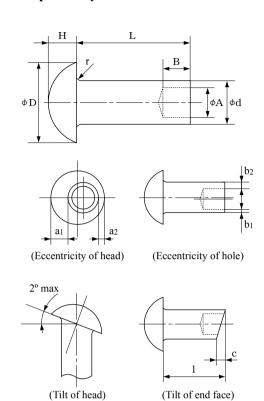


Specific	cation tak	ole						Unit (mm)
Nominal	diameter	2	2.5	3	4	5	6	8
	Standard	2	2.5	3	4	5	6	8
d	Tolerance	+ 0.02 - 0.05	- 0	0.08	0 - 0.10		0 - 0.12	0 - 0.15
	Standard	4	5	6	8	10	12	16
D	Tolerance	0 - 0		- (0 - 0.6		0.7
Н	Approx.	1	1.3	1.5	2	2.5	3	4
	Standard	1.3	1.7	2.1	2.8	3.5	4.2	5.6
A	Tolerance	± 0	0.05	± 0	0.07		± 0.10	
D	Standard	1.8	2.3	2.7	3.6	4.5	5.4	7.2
В	Tolerance	± 0	.15	± (0.2	± 0.25	± (0.3
a1-a2	Max		0	.2		0	.3	0.4
b1-b2	Max	0.1		0.15			0.2	
c	Max	0.2	0	.3		0.4		0.5
T	Min	4	5	6	8	10	12	16
L	Max	14	20	22	28	36	42	56
Recommended	Standard	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance	+ 0			± 0	0.05		± 0.10


■ Tolerance of length L

	forci ance of icin	Stil L					l	Jnıt (mm)	
	Nominal diameter	2	2.5	3	4	5	6	8	
	4 or below	± 0.1	± 0	.15	_				
ıΓ	Over 4 to 10	± 0.15	± ().2	± 0.25				
Length	Over 10 to 20	± 0.2	± 0	.25	± 0.3				
Le	Over 20 to 40	_	± 0.3		± 0.4				
	Over 40	_	_	_		± 0.5			

Round, Semi-Tubular Rivet



Calculation of under-head shank length

The length obtained by this calculation shall be used as a guide.

Shape and symbols of standard dimensions

Specifi	cation tab	ole								Unit (mm)	
Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8	
	Standard	1.2	1.6	2	2.5	3	4	5	6	8	
d	Tolerance		+ 0.02 - 0.05		- C	0.08	·	0 - 0.10		0 - 0.15	
	Standard	2.2	3	3.7	4.6	5.4	7.2	9	10.5	13.5	
D	Tolerance			0.3		0 - 0.4		0 - 0.5	- (·	
11	Standard	0.7	1	1.2	1.5	1.8	2.4	3	3.6	4.8	
Н	Tolerance		± 0	.05				± 0.1			
A	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6	
A	Tolerance	± 0.04 ± 0.05).05	± 0	.07		± 0.10		
В	Standard	1.1	1.4	1.8	2.3*4	2.7*4	3.6*4	4.5*4	5.4	7.2	
Б	Tolerance	± (0.1	± ().15	± 0.2		± 0.25 ±		± 0.3	
r	Max	0.06	0.08	0.1	0	0.2		0.3		.4	
a1-a2	Max	0.1			0.2			0	.3	0.4	
b1-b2	Max		0.1			0.15			0.2		
c	Max		0.2		0	.3		0.4		0.5	
L	Min	2	2.5	3	3	3.5	4.5	6	8	10	
L	Max	10	14	14	20	22	28	36	42	56	
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5	
work hole diameter	Tolerance		+ 0.				± 0	0.05		± 0.10	

^{*4.} When length L is close to the minimum or maximum, length B shall be 0.8 x d. For details, see the length B list below.

Tolerance of length L

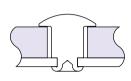
	Tolerance of length L Unit (mm)									
	Nominal diameter	3	4	5	6	8				
	4 or below		± 0.1			.15		_	_	
l T	Over 4 to 10		± 0.15		± 0.2		± 0.25			
Length	Over 10 to 20	± 0.2			± 0	.25		± 0	.3	
Le	Over 20 to 40	_			± 0.3		± 0.4			
	Over 40	_			_		± 0.5			

Length B list

Bengen B not											
Nominal diameter	2	.5	3		5						
Length L	3	3.5	3.5	4.5	5	5.5	6				
Length B	2.0		2.4	3.2			4.0				

Examples of Customized Rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don't hesitate to ask us for more information.

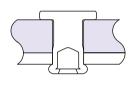

■ Shoulder rivet

Features: The rivet height, after being fastened, is constant. It can be

used as a fulcrum pin or a spring catch.

Uses : Glass louvers, bars and handles

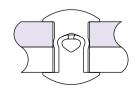
Expansion rivet


Features: The rivet shank is expanded to ensure alignment of the

materials. The dual curls fasten the materials firmly. The

curls will not crack.

Uses : Hole punches


Double head rivet

Features: Two different types of rivets are combined into a double

head rivet.

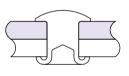
Uses : Wheeled suitcases (handles) and kitchen knife handles



Anti-crack rivet

Features: Heat treatment is performed to prevent cracking in curls.

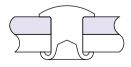
Uses : Baby products and nursing care products


Corrosion resistant rivet

Features: The rivet is highly resistant to corrosion by seawater or

chemicals(sulfuric acid and organic acid).

Uses : Marine products and products designed for outdoor use


■ Tapered semi-tubular rivet

Features : The rivet is more resistant to buckling than ordinary rivets. It is

suitable for fastening a long semi-tubular rivet.

Uses : Automobile-related products and can lever fittings

SELF-PIERCING RIVET

A mating hole in the materials is not required. Dissimilar materials are securely fastened.

■ Structure of self-piercing rivet

Head Shank Hole

Features

No mating hole required

The self-piercing rivet pierces through the materials while fastening them together. A work hole does not need to be made in advance.

Secure fastening of dissimilar materials

The rivet securely fastens dissimilar materials low in weldability, such as aluminum and iron.

Perfect for fastening color steel plates

The self-piercing rivet fastens materials without heating and repainting.

Environmentally friendly fastening

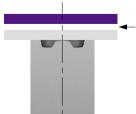
Fastening with a self-piercing rivet does not cause sparks, smoke, or riveting scrap.It is a clean fastening technique friendly to the working environment.


■ Fastening process

- 1) Place the workpieces on the punch.
- Rivet slider Escape chute

- 2 The stem descends, pressing the rivet head.

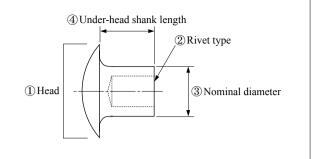
- (3) At the same time, the catcher descends, holding the rivet.
- 4 The rivet pierces through the workpieces and fastening is complete.



Operating precautions

If the rivet is installed in the situations below, it may result in improper fastening.

- (1) The workpieces are tilted.
- (2) There is a gap between the workpieces.
- (3) The punch is worn.



Name

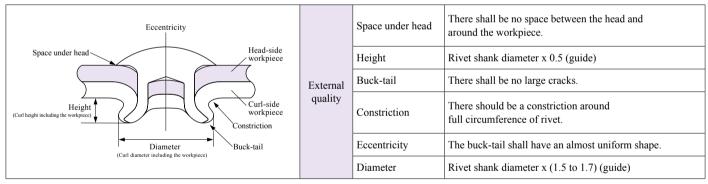
$\underset{\tiny\text{(1)}}{\underline{\text{Low round}}}\, \underset{\tiny\text{(2)}}{\underline{\text{Self-piercing}}}\, \underset{\tiny\text{(3)}}{\underline{3}} \times \underbrace{3.5}_{\tiny\text{(4)}}$

- ① Type of head
- (Low round, flat and countersunk)
- 2 Rivet type
- (Self-piecing)
- (See the specification table.)
- (See the specification table.)
 Under-head shank length
 (See the specification table.)

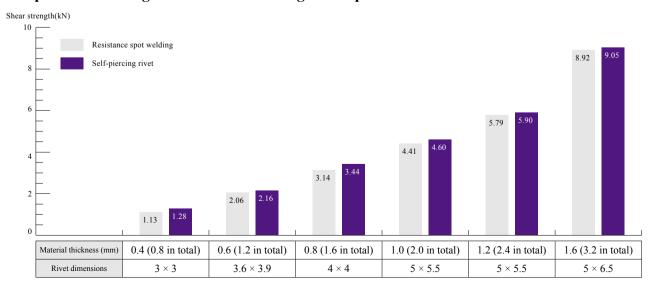
Types of heads

Low round Flat Countersunk

■ Rivet type


Nominal diameter / Under-head shank length

Unit (mm)


Nominal diameter	2		3		3.6		4				5				
Under-head L	2.0	2.3	3.0	3.5	3.9	4.2	4.5	4.0	4.5	5.0	5.5	5.5	6.0	6.5	7.0
	0.3	0.4	0.4	0.9	1.0	1.6	2.1	1.2	1.8	2.3	2.8	2.0	2.7	3.2	3.7
Fastening range	0.6	0.8	≀ 1.2	≀ 1.6	1.8	2.1	2.6	1.8	2.3	2.8	3.2	2.7	3.2	3.7	4.3

Note) The table is based on assumption that workpieces of SPCC (painted or plated) with hardness of Hv120 or equivalent are fastened.

Rivet installation criteria (Countersunk rivets and sealed self-piercing rivets (see page 22) are excluded.)

Comparison of strength with other fastening techniques

Self-Piercing Rivet

[MOVIE] http://www.byora.co.jp/index/products/movies/self-piercing.html

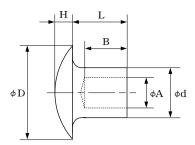
Name

$\underline{\underline{\text{Low round}}}_{\tiny{\scriptsize{\scriptsize{\scriptsize{\scriptsize{1}}}}}} \, \underline{\underline{\text{Self-piercing}}}_{\tiny{\tiny{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{3}}}}}}}} \, \underline{\underline{3}} \times \underline{\underline{3.5}}_{\tiny{\tiny{\scriptsize{\scriptsize{\scriptsize{\scriptsize{4}}}}}}}$

① Type of head

(Low round, flat and countersunk)

② Rivet type


(Self-piecing)

Nominal diameter

(See the specification table.)

Under-head shank length (See the specification table.)

Shape and symbols of standard dimensions

Material

Standard specification: Steel (high-carbon steel) Special specification : Stainless steel or aluminum

(Please ask us.)

Surface treatment

Zinc plating, nickel plating, chrome plating, Geomet or head baked finish

Specification table

Unit (mm)

														(11111)		
Nominal diameter 2			2	3		3.6		4			5					
d	Standard	2	2	3	3.6		4			5						
a	Tolerance	+ 0	0.02					± 0.05								
	Standard	3	.7	5.5	6.6 7.4						9.6					
D	Tolerance		0 - 0.3		0 -0.4											
Н	Standard	0	.6	1.0	1.2			1.5			1.8					
11	Tolerance				±0.05											
A 1.2 1.				1.8	1.8 2.2				2.4		2.9					
В 1.5						L×0.8										
L		2.0	2.3	3.5	3.9	4.2	4.5	4.5	5.0	5.5	5.5	6.0	6.5	7.0		
Recommended total		0.3	0.4	0.9	1.0	1.6	2.1	1.8	2.3	2.8	1.8	2.6	3.1	3.6		
	material thickness		1	ì	≀	≀	≀ .	≀	≀ .	1	≀ ≀	≀	≀ .	≀		
materia			0.8	1.6	1.8	2.1	2.6	2.3	2.8	3.2	2.6	3.3	3.8	4.3		

Note)(1) The size of a self-piercing rivet is subject to trial fastening.

- (2) Please ask us for the following requirements.
 - (i) The types of workpieces are different from steel plates for general mechanical structures. (ii) The difference in thickness between the two workpieces is extremely large.
- (iii) The total material thickness is outside the recommended fastening range.
- (3) Flat head and countersunk rivets are made to order.

Fastening strength measurement test

Fastening conditions

[Test Example] Cold-rolled steel plate, Material thickness: Intermediate value of fastening range [Rivet] Self-piercing rivet (steel)

Test method

[Testing machine] Testing machine : Compliant withthe IIS B 7721

Test speed : 15 mm/min

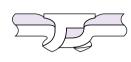
[Shear strength test method] *JIS Z 3136

	Fastening test c	Strength measurement result (kN)			
Rivet	Head-side material thickness (A)	Curl-side material thickness (B)	Total material thickness (A + B)	Tensile fracture	Shear fracture
2 × 2	0.25	0.25	0.50	0.24	0.58
3 × 3.5	0.60	0.60	1.20	1.18	1.97
3.6×4.5	1.20	1.20	2.40	2.97	4.21
4 × 5.5	1.60	1.60	3.20	4.80	6.90
5 × 7	1.60	2.30	3.90	9.10	11.20

Note) The strength values given in the brochure are measurement results obtained by our testing. They may vary with the type or thickness of materials used. In designing, be sure to allow a safety factor of at least three to one.

self-piercing rivet

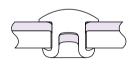
Examples of Customized Rivets


In addition to the standard products, we tailor rivets to specific customer needs. Please don't hesitate to ask us.

■ Three-legged rivet

Features: Scrap by punching of the workpieces will not to be generated. The workpieces or the rivet won't turn.

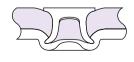
Uses : Noise barriers, automobiles and building structures



Half piercing rivet

Features: By making a hole in the thicker workpiece in advance, positioning is enabled using the hole. The half piercing rivet can fasten thicker workpieces than standard self-piercing rivets.

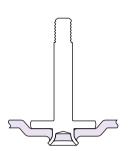
Uses : Scaffolds (plated steel plate / plated steel plate with hole), heavy shutters (color steel plate / plated steel plate)


■ Low-profile fastening (thin round curl)

Features: The buck-tail has a smooth contour and it does not catch

other materials.

Uses : Shutter rails (sliding part) and signboards

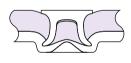

Self-piercing bolt

Features : No welding is required and the fastened joint does not need a

touch-up. The work area is kept clean and neat.

Uses : Motor mounting bolts and nuts

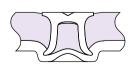
■ Sealed self-piercing rivet


Features: The rivet shank does not pierce through the workpieces and thus high air-tight sealing is maintained. The appearance is neat.

Uses : Storerooms, scaffold planks, shutters, storm doors,

containers (plywood / plated steel plate), building components,

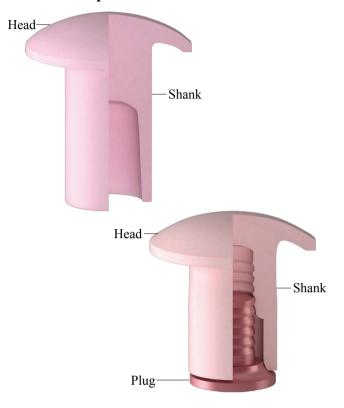
signboards and other products for outdoor use


■ Rivet for plywood/plaster

Features: This rivet does not require drilling a hole in the plywood or plaster. No drilling scrap is generated and the work area is kept

clean

Uses : Containers (plywood / plated steel plate) and building components



PLASTIC RIVET

No heating is required. Plastic rivet with an anti-loosening structure.

■ Structure of plastic rivet

Features

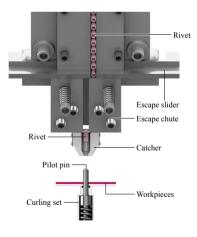
Fastening at normal temperature without heating

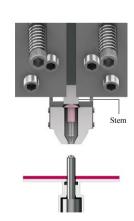
This is a plastic semi-tubular rivet that can be fastened at normal temperature.

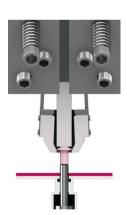
"Spring back structure" for anti-loosening

The spring back structures of the head and the buck-tail prevent loosening of a fastened rivet, common to plastic rivets.

Various colors

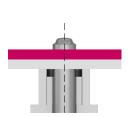

The rivet is made of polyacetal (POM) and it comes in a wide selection of colors.


Suitable for eco-friendly products


Using this rivet instead of a metal fastener, a manufacturer can develop a product that is environmentally friendly and requires no sorting for waste.

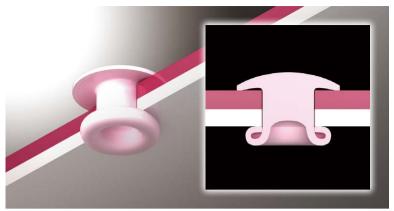
■ Fastening process

- ① Insert the pilot pin into the workpieces.
- ② The stem descends, pressing the rivet head.
- ③ At the same time, the catcher descends, holding the rivet.
- ④ Guided by the pilot pin, the rivet goes through the workpieces and fastening is complete.

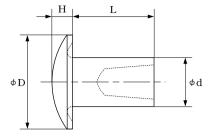


Operating precautions

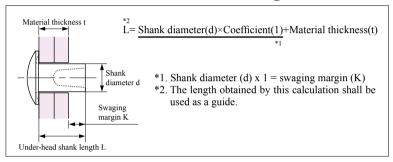
If the rivet is installed in the situations below, it may result in improper fastening


- (1) The workpieces are tilted.
- (2) There is a gap between the workpieces.
 - -
- (3) The pilot pin is not fully out, interfering with the workpieces.

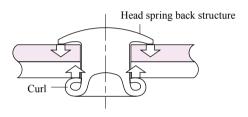
(4) The curling set is worn.



Roll-Up Rivet



[MOVIE] http://www.byora.co.jp/index/products/movies/rollup.html


Shape and symbols of standard dimensions

■ Calculation of under-head shank length

Fastening using spring back

The spring back structures of both the head and the curl prevent loosening of a fastened rivet. (PAT 3029862)

Specification table

Unit (mm)

Nominal	d		D		Н			L		Recommended work hole diameter		Strength (kN)	
diameter	Standard	Tolerance	Standard	Tolerance	Standard	Tolerance	Min	Max	Tolerance	Standard	Tolerance	Tensile	Shear
3.5	3.5		8.0		1.3		5			3.7		0.11	0.31
4	4		7.6		1.7		6	15.0		4.2		0.16	0.42
4.5	4.5	± 0.1	8.6	± 0.2	1.9	± 0.1	7		± 0.2	4.7	+ 0.1	0.20	0.46
5	5		9.6]	2.1		7	25.0		5.3		0.26	0.61
6	6		11.5		2.5		8	25.0		6.3		0.40	0.90

Remarks) A selection of materials, such as POM, PP and PA, are available to suit various purposes.

Note) The strength may be reduced when the rivet is fastened with a low ambient temperature or when it is used for some purposes. Please ask us. (Testing ambient temperature: 23°C)

■ Chemical properties of polyacetal (POM)

(1) Combustibility

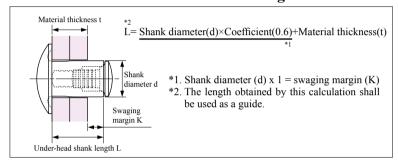
	Flash point	Autoignition point	Ignition time	Burning speed	Burning rate	Smoke	CO ₂	СО	O ₂
POM	320°C	400°C	11 sec	3.5 g/min	98.9%	0.005 m ²	0.191Vol%	0.001Vol%	0.258Vol%

Remarks) POM is plastic made up of carbon (C), hydrogen (H) and oxygen (O). The composition ratio stands at C:40%, H:5.7% and O:53.3%.

(2) Chemical resistance

 $Compatibility \ @: Fully \ compatible \ @: With \ reservations, \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ \times \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ X \ : Not \ compatible \ @: Only \ at \ normal \ temperature \ with \ no \ stress, \ Not \ compatible \ @: Only \ at \ normal \ no$

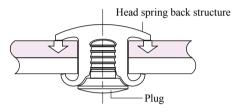
	Methanol	Ethanol	Toluene	Gasoline	Gas oil	EG oil	Acetic acid 1%	Sulfuric acid 1%	Hydrochloric acid 10%
POM	0	0	0	0	0	0	0	0	\triangle


Remarks) The rivet has high resistance to chemicals except for strong acids, such as hydrochloric acid and sulfuric acid.

e-Power Rivet



[MOVIE] http://www.byora.co.jp/index/products/movies/epower.html


Calculation of under-head shank length

Shape and symbols of standard dimensions

■ Fastening using spring back

The effect of the plug and the head "spring back structure" prevents loosening of the fastened joint.

Specification table

Unit (mm)

*1 Nominal	d		D		Н		P*2		L		Recommended work hole diameter		Strength (kN)	
diameter	Standard	Tolerance	Standard	Tolerance	Standard	Tolerance	Dimension	Min	Max	Tolerance	Standard	Tolerance	Tensile	Shear
3	3	+ 0.2	5.8	± 0.2	1.2	± 0.1	1	5	15	± 0.2	3.2	+ 0.1	0.17	0.21
5	5	- 0.1	9.6	± 0.2	2.1	± 0.1	1.3	7	25	± 0.2	5.4	0	0.58	0.82

^{*1.} Please ask us for different nomal diameter. *2. The P lengths are given as guidelines.

Remarks) A selection of materials, such as POM, PP and PA, are available to suit various purposes.

Note) (1) The strength values above are results of measurement using POM.

(2) The strength may be reduced when the rivet is fastened with a low ambient temperature or when it is used for some purposes. Please ask us.

(Testing ambient temperature: 23°C)

RIVET SETTER

Fukui Byora's rivet setter that meets diversified needs

Fukui Byora's rivet setter equipped with an automatic rivet feeder will dramatically improve efficiency in fastening work.

Specifications

	Mo	del		RS	525			RS	620			RS	305	
	Photo													
Sour	rce voltag	ge		Single-phas	se 100 VA	АC		Three-phas	se 200 VA	лС		Three-phas	e 200 VA	.C
Pow	er consui	nption (W)	400				400				400			
Driv	e system		Pressurizing by cam			Pressurizing by cam				Pressurizing by flywheel			eel	
Takt ti	ima	50Hz	0.4s (60spm)					0.	6s			0.	4s	
Takt ti	iiiie	60Hz	0.45 (005pm)				0.5s					0.	3s	
Allow	able pres	surization load	9kN			15kN				15	kN			
Machine	Diı	mensions (mm)		W340×D5	585×H83	0	W600×D800×H1720				W600×D870×H1550			0
dimensions	Ar	m length (mm)		200 (30	0or400)		320 (400)					320 ((400)	
	Wo	rk height (mm)		28	30			90	67			90	57	
	Wei	ght		110)kg			300	0kg			310	0kg	
	Semi-		Chanl	1.6~4.5	Max		Classil	3 ~ 6	Max		Chanl	3 ~ 6	Max	
Applicable	tubular	SUS	Shank diameter	1.6~3.5	length L	12(20)	Shank diameter	3 ~ 5	length L	15(25)	Shank diameter	3 ~ 4	length L	15(30)
rivet size		AL		1.6~6				3 ~ 6	,			3 ~ 6		
i i i i i i i i i i i i i i i i i i i	Self-	SW	Shank	2	Max	Standard	Shank	3 ~ 3.6	Max	Standard	Shank	3 ~ 3.6	Max	Standard
	piercing	SUS	diameter	-	length L	size	diameter	3 ~ 3.5	length L	size	diameter	3 ~ 3.5	length L	size

Note) (1) The standard specification of our rivet setter is based on the JIS B 1215 low round head rivet fastening. When the standardized JIS B 1215 rivet has the head other than low round or the dimensions partially different from the specification (e.g., hole diameter), it shall be handled as optional specification.

- (2) The figures in () are optional sizes. (3) In the case of shaft diameter of 1.6 mm, the special specification may be adopted depending on type of material or length L.
- (4) Trial fastening may be required depending on fastening conditions (please ask us in advance). (5) The specifications above are subject to change without notice.
- (6) Specialized rivet setter can be built according to your fastening conditions. If you are interested, please consult with us.

Optional specifications

Code			Description	Code	Description
30BR	Arm length	arm length 300 mm (for RS525 only)			Pilot pin lockup system (pneumatic)
40BR	Arm length	400 mm (fo	or all the models)	MLU	Pilot pin lockup system (mechanical)
AH	Automatic	hopper		PS	Punch up/down slide mechanism
PF	Parts feede	r		ARP	Rivet forced insertion system
L	L-spec: Lei	ngth L up to	4 times the shank diameter	ARE	Pneumatic escape system
		RS525	Length L: 15 to 24 mm	Е	Power supply specification (e.g., overseas)
LL	LL-spec	LL-spec RS305 Length L: 15 to 30 mm		SP	Spotlight
		RS620 Length L: 15 to 25 mm		T2	Wheeled table (for desktop type)

■ Rivet setter safety devices

Workpiece holder	Lockup curling set	Two-hand control button switch	Photoelectric safety device

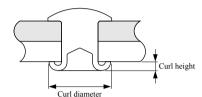
Remarks) All the safety devices above are optional extras.

Design Guidelines for Semi-tubular rivet

Calculation of rivet size

(1) Calculation of under-head shank length (guide)

Onder-head thickness t Swaging margin K

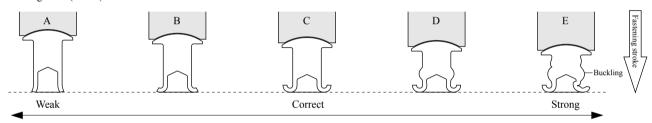

* Use the result of the calculation below as a guide.

 $\stackrel{*_3}{L}$ = Shank diameter(d)×Coefficient(0.6) +Material thickness(t)

- *1. Shank diameter (d) x coefficient (0.6) = swaging margin (K)
- *2. Use coefficient (0.5) as a guide for SUSXM7
- *3. The under-head shank length L should be less than 5 times the shank diameter or in the case of stainless steel less than double.

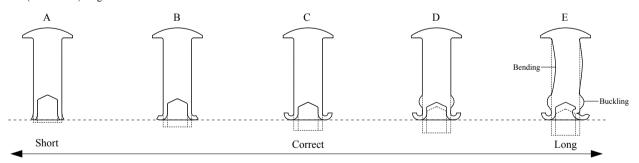
 (If the length exceeds the limit, it may result in buckling or any other faults.)

(2) Calculation of finished dimensions of buck-tail (guide)



Curl diameter = shank diameter (d) \times 1.5

Curl height = shank diameter (d) \times 0.2


■ Finished conditions

(1) Fastening force (stroke)

(Fastening force is weak) When fastening force is too weak, the curl diameter will be small and the rivet strength may be reduced (example A above). (Fastening force is strong) When fastening force is too strong, buckling may occur and it may result in defective fastening (example E above).

(2) Rivet (under-head) length

(L is shorter than correct length) When the length is too short, the curl diameter will be small and the rivet strength may be reduced (example A above). (L is longer than correct length) When the length is too long, bending or buckling may occur and it may result in defective fastening (example E above).

■ Calculation of semi-tubular rivet fastening load

* The result of the calculation below shall be used as a guide.

$$\mathbf{F}(\mathbf{k}\mathbf{N}) = (\mathbf{d}^2 - \mathbf{A}^2) \times \mathbf{T} \times \mathbf{K}$$

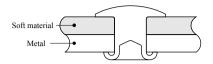
d: Shank diameter (mm) A: Hole diameter (mm) T: Fastening coefficient K: Material constant

① Fastening coefficient T (Number varying with fastening force)

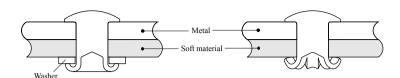
Fastening force	Weak	Standard (normal)	Strong
Fastening coefficient T	0.6	0.75	0.9

② Material constant K (Number varying with rivet material)

Material	SWCH10A	A1070W	A1200W	A5052W	A5056W	C1100W	C2700W	SUS430	SUSXM7
Material constant K	1.0	0.24	0.24	0.45	0.55	0.59	0.96	1.34	1.64


■ Fastening soft material

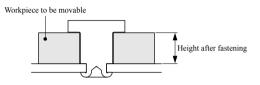
(1) The head-side workpiece is a soft material.


Recommendation) Use a truss rivet

(2) The curl-side workpiece is a soft material.

Recommendation A) Use a washer on the curl side. Recommendation B) Use the PL (petal) type.

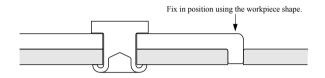
As a truss rivet has a large diameter head, the workpieces are held more securely.



Using a washer with a larger diameter than curl diameter, the workpieces are held more securely.

The fastening diameter is larger than usual and the workpieces are held more securely.

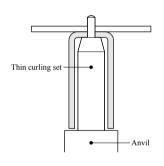
■ Making the workpieces movable

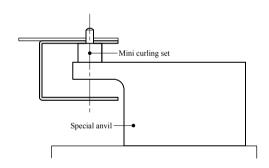

Recommendation) Use a shoulder rivet.

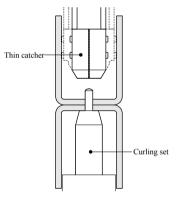
Choose the appropriate shoulder rivet size, considering the thickness and clearance of the workpiece to be made movable.

■ Preventing turning and misalignment of workpieces

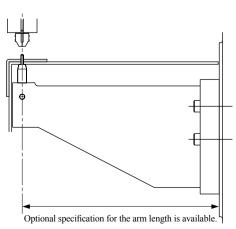
Recommendation) Fix in position using two rivets.

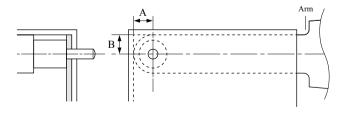

We recommend that the workpieces should be kept in position using two rivets or using the workpiece shape and fastening with a rivet.


■ Workpieces interfere with the rivet setter (fastening jig).


* Preventive measures on the rivet setter

(1) Thin curling set


- (2) Mini curling set + special anvil
- (3) Thin catcher



(4) Great arm length is required.

(5) Fastening a corner of box-shaped workpieces

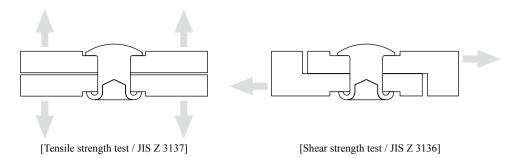
The arm for holding the curling set can be machined to meet specific requirements.

* We will minimize the dimensions A and B, considering the arm strength against the fastening load.

Strength Test Methods and Galvanic Corrosion

■ Tensile/shear strength test methods

(for semi-tubular rivet)


Test conditions

[Test specimen]

- Material: Heat-treated steel plate
- Thickness: Recommended fastening range
- Work hole diameter: Recommended work hole diameter

[Testing machine]

- Testing machine: Compliant with the JIS B 7721
- Test speed: 15 mm/min

- Apply a load to a rivet in the arrow directions using a tension tester. Measure the maximum load the rivet withstands before it breaks.
- 2. The strength values given in the brochure are measurement results obtained by our testing. They may vary with the type or thickness of materials used. In designing, be sure to allow a safety factor of at least three.

■ Galvanic corrosion (dissimilar metal corrosion)

When different metals are in contact with each other, if moisture is present, a potential difference between the metals will cause partial electrification and cause corrosion. This is called galvanic corrosion. Even when the base material and the rivet fastened to it are both resistant to corrosion, when they come into contact with each other, galvanic corrosion may occur. The areas of the base material and the rivet may affect the progression of corrosion.

Base material and rivet for fastening

Conditions triggering galvanic corrosion	Corrosion prevention measures
The potential difference is large.	Use materials with a smaller potential difference. Reduce the potential difference, e.g., by plating.
Metals are in contact with moisture.	Protect with a plastic or other insulators. Insulate by painting.
The atmosphere is hot and humid.	Protect with a plastic or other insulators. Insulate by painting.
The material of the rivet is low-potential metal (base metal).	Make sure that the material of the rivet has a higher potential (noble) than the base material.

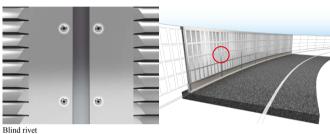
■ Galvanic series in sea water

Potential	Meta	1
-1.50	Magnesium	Base metal
-1.03	Zinc	(corrosion side)
-0.74	Aluminum (5000 series)	· T
-0.61	Carbon steel	
-0.45	Solder (50/50)	
-0.42	Tin	
-0.36	Brass	
-0.36	Copper	
-0.22	SUS430 (passive)	
-0.20	Nickel	
-0.15	SUS410	
-0.15	Titanium (industrial)	
-0.13	Silver	
-0.10	Titanium (high purity)	
-0.08	SUS304	
-0.05	SUS316	Noble metal
0.26	Platinum	(corrosion-proof side)

Fastening condit	tions (combination)			Progression	Fastening
Rivet material	Workpiece material	Galvanic corrosion example		of corrosion	reliability
Aluminum	Stainless steel	Corrosion of the rivet (the area in contact with the base material) advances very fast.Example under extremely severe condition	Aluminum Galvanic corrosion Stainless steel	Fast	×
Stainless steel	Aluminum	Corrosion of the base material (the area in contact with the rivet) advances. When the base material has a large area of corrosions, the progression of corrosion is relatively slow and the materials can be used depending on usage environment (please ask us).	Stainless steel Galvanic corrosion		Δ
Aluminum	Steel (zinc plating)	Corrosion of the zinc coat of the base material (the area in contact with the rivet) advances first and then corrosion of the rivet begins to advance. The progression of corrosion is slow and the materials can be used depending on usage environment (please ask us).	Aluminum Galvanic corrosion		Δ
Steel (zinc plating)	Aluminum	Corrosion of the zinc coat of the rivet (the area in contact with the base material) advances first and then corrosion of the base material begins to advance. The progression of corrosion is very slow and the materials can be used depending on usage environment (please ask us).	Steel Galvanic corrosion Aluminum	Slow	0

Application Examples

■ Application examples of various rivets


Aluminum wing roof truck

Self-piercing rivets high in strength and durability are used for assembly of large workpieces (wing roof truck).

Noise barrier

Blind rivets are used for noise barriers for an expressway subject to severe weather conditions.

Roof

Self-piercing rivets requiring no mating hole are used for roof trusses, which require long-term durability and strength.

■ Gate

Blind rivets, which are easy to install, are used for a gate consisting of workpieces with complicated structures and when operators have to work in various postures.

Louvered window

Semi-tubular shoulder rivets are used for louvered windows. The workpieces (fittings for holding

Semi-tubular rivet

Bag

Semi-tubular rivets are used for a hand bag, which requires a decorative appearance and stable strength. The head may be shaped to original design.

Comi tubular riv

Cooking utensil

Semi-tubular rivets are used for cooking utensils, which are heated or cooled rapidly and which require water resistance and strength

Semi-tubular rivet

■ Sample book

Roll-up rivets (plastic rivets) are an eco friendly solution. Good examples are office binders and building materials.

Roll-up rive

■ PC case

Blind rivets, fastened with access to only one side, are used for workpieces with complicated contours where the rear of the joint is not accessible with a jig.

■ Baby carriage

Semi-tubular rivets, high in stability, are used for a baby carriage that requires high fastening reliability and durability.

FUKUI BYORA Co., Ltd.

Certified under ISO 9001, ISO 14001, ISO 13485, and IATF 16949

	Cottilled milder 1867 7001, 186 17 1001, 186 17 1001,			
International Sales Division	6F.PMO GINZA, 8-12-8 Ginza, Chuo-ku, Tokyo 104-0061, Japan			
	TEL: +81 3-6228-4391 FAX: +81 3-6228-4493			
World Headquarters	1-7 Yamajuraku, Awara-city, Fukui 919-0898, Japan			
	TEL: +81 776-73-1000 FAX: +81 776-73-0111			
Business Headquarters	59-115 Yubinaka, Awara-city, Fukui 919-0898, Japan			
	TEL: +81 776-75-1115 FAX: +81 776-75-1022			
Tokyo Branch	5F.PMO GINZA, 8-12-8 Ginza, Chuo-ku, Tokyo 104-0061, Japan			
	TEL: +81 3-6278-8736 FAX: +81 3-6278-8746			
Osaka Branch	Dojima Avanza 5F, 1-6-20 Dojima, Kita-ku, Osaka-shi Osaka 530-0003, Japan			
	TEL: +81 6-6225-8387 FAX: +81 6-6225-8386			
Nagoya Branch	NFC Marunouchi Building 12F, 1-17-29 Marunouchi, Naka-ku, Nagoya-city, Aichi 460-0002, Japan			
	TEL: +81 52-265-7201 FAX: +81 52-265-7205			
Overseas Group Companies				
BYORA U.S.A. CORPORATION	733 Bishop Street, Suite#1280 Honolulu, Hawaii 96813 U.S.A.			
	TEL: +1 808-585-9755 FAX: +1 808-585-9756			

No51 Bukit Batok Crescent, #08-23, Unity Centre Singapore 658077

FUKUI BYORA (THAILAND) CO., LTD. Amata City Rayong, Industrial Estate 7/413 Moo 6 Tambon Mabyangporn, Amphur Pluakdaeng, Rayong, 21140, Thailand

TEL: +66 38-02-7591~3 FAX: +66 38-02-7594

TEL: +852 2331-8305 FAX: +852 2305-2799

FUKUI BYORA HONG KONG CO., LTD. Unit 902, Westley Square, 48 Hoi Yuen Road, Kwun Tong, Kowloon, Hong Kong

FAX: +65 6257-7510

www.byora.co.jp

FUKUI BYORA SINGAPORE PTE. LTD.

E-mail: internationalsales@byora.co.jp

For quick access to Fukui Byora's website, scan the QR code on the right with your smartphone or tablet.

TEL: +65 6756-9210

* The specifications are subject to change without notice. All rights reserved. 21.1.20.0000 © FUKUI BYORA

